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MapReduce: Simplified Data Processing on Large Clusters

Google File System

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT
We have designed and implemented the Google File Sys-
fom, 2 salble disrbute fle system for largo istrbnted

Finning on hexpensive commodity hardware, ad it delivers
high aggrogate performance to a large mumber of clients.

aring many of the same previous dis-
tributed fle ‘our design has been driven by obser-
vations of our application workloads and technological envi-

ronment, both current and anticipated, that refiect a marked
departure from some earlier file system assumptions. This
‘has led us to recxamine traditional choices and explore rad-

different design points.

The fle system has successfully met our storege needs.
1t is widely deployed within Google as the storege platform
for the generation and processing deunudhyonrm
vice as well s and develr
arge data seis. Tho largest cluste to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

sper, we present file system interface extensions

desigued to support ditsibuted applieations, dscus many
‘aapets of our dasigs, and report meaniremats fom both
‘micro-benchmarks and real world use.

Categories and Subject Descriptors
D [4]: 3—Distributed fie systems

General Terms

Design, reliability, performance, measurement

Keywords
Fault tolerance, scalability, data storage, clustered storage
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1. INTRODUCTION

‘We have designed and implemented the Google File Sys-
tem (GFS)
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design

tional choices and explored radically difforent points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive con-
‘modity parts and I acccssod by a comparable mumber of
client machines. The quantity and quality of the compo-

rent failures, We have seen problems cansed by application
bugs, oporating sysem bugs, human crrors, and tho lures
s, connectors, ntwrling, and pove sup-
Plen Tharelore, comstant monltocing, ener detecsion, Butt
icesner, s assomnbe ot Re el b e
system.
Second, files are huge by traditional standards. Multi-GB
are common. Each file typically contains many applica-
tion objects such as web documents. When we are regularly
‘working with fast growing data sets of many TBs comprising
billions of objects, it is unwieldy to manago billions of ap-
‘proximately KB-sized files even when the file system could
support it. As a result, design assumptions and parameters
such as 1/0 operation and block sizes have to be revisited.
Third, most files are mutated by appending new data
rather th
a file are practically non-cxistent. Once written, the files
are only read, and often only sequentially. A variety of
data share these characteristics. Some may constitute large
positori dat Some
‘may be data streams continuously generated by running ap-
oo S iy b ichivl . Borun sy, b
termediate results produced on one machine
on another, whether simultaneously o later in m i, Ghv

ing the applications and the fil system
APTbencis the everel sysem by incresing out iy
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MapReduce

Teffrey Dean and Sanjay Ghemawat
@google.com, sanjay@google.com
Google, Inc.

g;vm day, etc. Most such computatio:
. ally straightforward. However, the inpt
1 an associ- lxxge and the computations have to be ¢
rating large  pyndregs or thousands of machines in «
PIOCESSES & 4 reqgongble amount of time. The issuc
tekey/value  gjjelize the computation, distribute the
failures conspire to obscure the origina
skey. Many  (ation with large amounts of complex ¢
L asshown  these issues.
As a reaction to this complexity, we
reautomati-  abstraction that allows us to express the
sterofcom-  tions we were trying to perform but hid
scareof the tails of parallelization, fault-tolerance,
ing the pro-  and load balancing in a library. Our ¢
andlingma-  spired by the map and reduce primitive
ter-machine  and many other functional languages.
without any  most of our computations involved app
ems to cas-  eration to each logical “record” in our
system. compute a set of intermediate key/valu
on alage  applying a reduce operation to all the v.
ly scalable:  the same key, in order to combine the
S many ter.  propriately. Our use of a functional n
togrammers  Specified map and reduce operations all
Reducepro-  lelize large computations easily and to
>fonethou- as the primary mechanism for fault tole:
Ie'sclusters  The major contributions of this work.
interface that enables automat
and distribution of large-scale compute
with an implementation of this interfa
high performance on large clusers of cc
Section2

BigTable

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements

Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of

In this paper il i
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
and deployed a distributed storage system

nyothersat  gives several examples. Section 3 des
sial-purpose  mentation of the MapReduce interface
f raw data,  our cluster-based computing environme
’gs, etc., o scribes several refinements of the prog
asinverted that we have found useful. Section 5 |
>h structure  measurements of our implementation
Jer of pages tasks. Section 6 explores the use of M:
queries ina  Google including our experiences in usi

2004

for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
‘The Bigtabl by these prod wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.

Tn many ways, Bigtable resembles a database: it shares
‘many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

To appear in OSDI 2006

achleved scahbd:ty and high performance, but Bigtable
ystems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
‘rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client APIL Sec-
i p 3 &

ture on which Bigtable depends. Section 5 describes the

of the Bigtable is ion, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
‘measurements of Bigtable’s performance. We describe
soveral examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) — string

2005



FlumeJava: Easy, Efficient Data-F

Craig Chambers, Ashish Raniwala, Fran
Stephen Adams, Robert R. Henr,
Robert Bradshaw, Nathan Weizenb

Google, Inc.
{chambers,raniwala,fjp,sra,rrh,robertwb,nweiz }

Abstract

MapReduce and similar systems significantly ease the task of writ-
ing data-parallel code. However, many real-world computations re-
quire a pipeline of and

such pipelines can be difficult. We presem FlumeJava, a Java li-
brary that makes it easy to develop, test. and run efficient data-
parallel pipelines. At the core of the FlumeJava library are a cou-
ple of classes that represent immutable parallel collections, each
supporting a modest number of operations for processing them in
parallel. Parallel collections and their operations present a simple,

MapReduce
down into a may|
real-world comj
Such data-paral
to chain togethe|
tional work to 1
mediate results
can become ob)|
making it diffic
tion. Moreover,

high-level. uniform abstraction over different data representations recpr:]cs “baked
and execution strategies. To enable parallel operations to run effi- OB ‘:_0'“}‘“'3
ciently, FlumeJava defers their evaluation, instead internally con- In this papel|

structing an execution plan dataflow graph. When the final results support the dev|
of the parallel operations are eventually needed, FlumeJava first op- Java library cer|

timizes the execution plan, and then executes the optimized opera- collections. Par|

tions on p (e.g ). The allel op r
ion of high-level furparallc] data and compu- computations. /

tation, deferred evaluation and optimization, and efficient parallel
primitives yields an easy-to-use system that approaches the effi-
ciency of hand-optimized pipelines. FlumeJava is in active use by
hundreds of pipeline developers within Google.

stractions; there
separate progral

FlumeJava's|
how data is rep|
as an in-memor
ternal storage s
Similarly, Flum|
plementation sti
as a local seque

. cation, or (in thy
1. Introduction computation. T

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms ~ Algorithms, L:mguages Performance

datacaraiel
p Java

Building programs to process massive amounts of data in parallel tially P
can be very hard. MapReduce [6-8] greatly cased this task for data- in a single proce
parallel computations. It presented a simple abstraction to users buggers, and the
for how to think about their computation, and it managed many of data. They :A.Iim
the difficult low-level tasks, such as and Java

the parallel work across many machines, and coping robustly with services are dev
failures of machines, networks, and data. It has been used very To achieve g
successfully in practice by many developers. MapReduce's success parallel operatiq
in this domain inspired the development of a number of related parallel operatic
systems, including Hadoop [2], LINQ/Dryad [20], and Pig [3]. simply records
cution plan gray|
computation ha|
cution plan, fol
gether into a sn|
then runs the ¢
cution plan, Fly
ment each oper:
MapReduce, bal
places remote c|
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MillWheel: Fault-Tolerant Stream Processing ¢
Internet Scale

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberm:
Reuven Lax, Sam McVeety, Danéel Nllills, Paul Nordstrom, Sam Whittle
oogle
{takidau, alexgb, kayab, chernyak, haberman,
relax, sgme, millsd, pgn, samuelw}@google.com

allowing users to create massive distributed syster
By allowing users to focus solely on

ABSTRACT

MillWheel is a for building low-I; dat:

applications that is widely used at Google. Users specify a directed
ion graph and ication code for indivi nodes, and

the system manages persistent state and the contmuom ﬁow of

logic. this kind of programming model allows use
the semantics of their system without being distril
perts. In particular, users are able to depend on

and fault-tol as axi¢

records, all within the envelope of the
guarantees.

This paper describes MillWheel's programming model as well as
its implementation. The case study of a continuous anomaly detec-
tor in use at Google serves to motivate how many of MillWheel’s
features are used. MillWheel's programming model provides a no-
tion of logical time, making it simple to write time-based aggre-
gations. MillWheel was designed from the outset with fault toler-
ance and scalability in mind. In practice, we find that MillWheel’s
unique combination of scalability, fault tolerance, and a versatile
programming model lends itself to a wide variety of problems at
Google.

1. INTRODUCTION

Stream processing systems are critical to providing content to
users and allowing organizations to make faster and better deci-
sions, particularly because of their ability to provide low latency
results. Users want real-time news about the world around them.
Businesses are likewise interested in the value provided by real-
time intelligence sources such as spam filtering and intrusion de-
tection. Similarly, scientists must cull noteworthy results from im-
mense streams of raw data.

Streaming syﬂem: at Google require fault tolerance. persistent
state, and Distributed systems run on of shared
machines, any of which can fail at any time. Model-based stream-
ing systems, like anomaly detectors. depend on predictions that are
generated from weeks of data, and their models must be updated
on-the-fly as new data arrives. Scaling these systems by orders of
magnitude should not cause a commensurate increase in the opera-
tional cost of building and maintaining the system.

Programming models for distributed systems, like MapReduce

[11]. hide the fr s il details in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases.
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
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stricting the surface area over which bugs and err
Supporting a variety of common programming 1
drives adoption, as users can leverage the utility’
of existing libraries in a familiar idiom, rather tha
to a domain-specific language.

MillWheel is such a programming model, tailol
streaming, low-latency systems. Users write ap)
individual nodes in a directed compute graph, fa
define an arbitrary, dynamic topology. Records a
tinuously along edges in the graph. MillWheel
erance at the framework level, where any node o
topology can fail at any time without affecting
the result. As part of this fault tolerance, every rec
is guaranteed to be delivered to its consumers.
API that MillWheel provides for record process
record in an idempotent fashion, making record ¢
actly once from the user’s perspective. MillWhey
progress at fine granularity, eliminating any need
data at external senders for long periods between

Other streaming systems do not provide this cot
tolerance, versatility, and scalability. Spark Str
Sonora [32] do excellent jobs of efficient checkp
the space of operators that are available to use
does not provide fully fault-tolerant persistent sta
[23] exactly-once mechanism for record delivery.
quires strict transaction ordering to operate. Atter

batch ing model of and Hadc
low-latency systems result in compromised flexil
it ifi on i Dis,

P P
[33] in Spark Streaming. Streaming SQL syster|
[21] [24] provide succinct and simple solutions t¢
problems, but intuitive state abstractions and cor
logic (e.g. matrix multiplication) are more natura
ing the operational flow of an imperative langu;
declarative language like SQL.
Our contributions are a programming model fi
tems and an implementation of the MillWheel fra
o We have designed a programming model tha
plex streaming systems to be created withou
tems expertise.

o We have built an efficient implementation ¢

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Erig Sclhmidt, Sam Whittle
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ABSTRACT

U led dered, global-scale datasets are increas-
mglv common in day-to- dav business (e.g. Web logs, mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

We propose that a fundamental shift of approach is nec-
essary to deal with these evolved requirements in modern
data processing. We as a field must stop trying to groom un-
bounded datasets into finite pools of information that even-
tually become complete, and instead live and breathe under
the assumption that we will never know if or when we have
seen all of our data, only that new data will arrive, old data
may be retracted, and the only way to make this problem
tractable is via principled abstractions that allow the prac-
titioner the choice of appropriate tradeoffs along the axes of
interest: correctness, latency, and cost.

In this paper, we present one such approach, the Dataflow
Model', along with a detailed examination of the semantics
it enables, an overview of the core principles that guided its
design, and a validation of the model itself via the real-world
experiences that led to its development.

'We use the term “Dataflow Model” to describe the pro-
cessing model of Google Cloud Dataflow [20], which is based
upon technology from FlumelJava [12] and MillWheel [2].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit d/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.
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1. INTRODUCTION

Modern data processing is a complex and exciting field.
From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4], Pig [18], Hive [29], Spark [33]), to the vast
body of work on streaming within the SQL community (e.g.
query systems [1, 14, 15|, windowing [22], data streams [24],
time domains [28], semantic models [9]), to the more recent
forays in low-latency processing such as Spark Streaming
[34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider
wants to monetize their content by displaying video ads and
billing advertisers for the amount of advertising watched.
The platform supports online and offline views for content
and ads. The video provider wants to know how much to bill
each advertiser each day, as well as aggregate statistics about
the videos and ads. In addition, they want to efficiently run
offline experiments over large swaths of historical data.

Advertisers/content providers want to know how often
and for how long their videos are being watched, with which
content /ads, and by which demographic groups. They also
want to know how much they are being charged/paid. They
want all of this information as quickly as possible, so that
they can adjust budgets and bids, change targeting, tweak
campaigns, and plan future directions in as close to real
time as possible. Since money is involved, correctness is
paramount.

Though data processing systems are complex by nature,
the video provider wants a programming model that is sim-
ple and flexible. And finally, since the Internet has so greatly
expanded the reach of any business that can be parceled
along its backbone, they also require a system that can han-
dle the diaspora of global scale data.

The information that must be calculated for such a use
case is essentially the time and length of each video viewing,
who viewed it, and with which ad or content it was paired
(i.e. per-user, per-video viewing sessions). Conceptually
this is straightforward, yet existing models and systems all
fall short of meeting the stated requirements.

Batch systems such as MapReduce (and its Hadoop vari-
ants, including Pig and Hive), FlumeJava, and Spark suffer
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Government Leaders Face Challenges in Delivering
Critical Insights

Enterprise demand Increasing volumes Security is inadequate to
exceeds IT capacity overrun capacity & protect the organization
& funding operating budgets and the mission




Government has valuable data to use
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Opportunities

e Increase operational efficiencies
e Provide critical cyber security insights

e [oster civic engagement
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Innovators in Transportation

A

Google Maps

Organizations need reliable, real-time
data within user-friendly interfaces to
empower their employees and keep

up with their customers’ expectations.
Google Maps offers visualization,
navigation, and analytics to help leading
enterprises chart new territory and find
transformative new opportunities.

Y Google Cloud
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Waze

Nobody knows what'’s happening in your
city better than the people who live there.
Waze exchanges publicly-available
incidents and slow-down data, enabling our
government partners to respond more
immediately to accidents and analyze
congestion on their roads.

w

WAYMO

Waymo

Driving today is not as safe or enjoyable as
it should be. Waymo's mission is to make it
safe and easy for people and things to
move around. They aim to bring fully
self-driving technology to the world that
can improve mobility by giving people the
freedom to get around and help save
thousands of lives now lost to traffic
accidents.



Roads are busier, heavily
congested...
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The average commuter in metropolitan areas
experience 4 hours of road congestion every day. '

Y Google Cloud
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...and dangerous

Current trends show that by 2030, road
traffic injuries will become the seventh
leading cause of death globally.?

1. U.S. Department of Transportation, Federal Highway Administration Congestion Trends Report
2. CDC



The solution isn’t
building more roads

State and local government construction o
costs rose 13% in the last five years' :
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$31.65 0 . It's harness.lng your
billion X data to optimize those
; / roads
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3 Google CIOUd 1. U.S. Census Bureau, Seasonally Adjusted Data



L 8] Traffic on 405 Fwy Is Worse 5 X
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Traffic on 405 Fwy Is Worse 5 Years After $1
Billion Widening Project in Sepulveda Pass: Study

POSTED 8:16 AM, MAY 7, 2019, BY ERIC SPILLMAN, TRACY BLOOM AND STEVE KUZJ, UPDATED AT
02:40PM, MAY 7, 2019

¥ ER m LINKEDIN @ PINTEREST g EMAIL

Study: 405 Fwy Traffic Worse After Widening Project

HEADLINES

Despite a $1 billion widening project to improve traffic along a 10-mile stretch of the 405
Freeway that connects the San Fernando Valley and West Los Angeles, traffic is worse

now in the Sepulveda Pass than it was when construction was completed several yea
ago.



But that data exists in silos,
making it difficult to use
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Disconnected data is
costing us too much
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NSC estimates the cost of motor-vehicle More than 40,000 people died in motor
deaths, injuries, and property damage vehicle crashes in 2017.2

in 2016 was $416.2 billion. '

G I CI d 1. National Safety Council
oog e ou 2. US Department of Transportation’s National Highway Traffic Safety Administration



What if your data could be the driver
of traffic management?
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Enhance Coordinate Predict Planning Projects Fleet as Data
situational response based on road and device urban and optimizing optimizing
awareness based real-time insights maintenance transportation transportation assets transportation assets
on traffic patterns planning
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is a cloud-based data analytics platform that brings
intelligence, efficiency, and interoperability to CDOT’s existing
transportation network while

Y Google Cloud

22



Ingest Transform Store Analyze Interact

Get petabytes of data in Prepare, clean, and Create, save, and Derive data insights Explore and
from a variety of transform data quickly store datasets at scale without present interactive and
formats. and easily. inexpensively. managing servers. impactful data insights.

Google Cloud



Conversational Interfaces

Speech to text queries powered by machine learning

What is the average age of the water mains in town?

How many homes are on Santa Paula Avenue?

e e e

V

How many bikes per day use the bridge over Stevens Creek Blvd?

How many properties added pools last year?

Google Cloud
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Problems we’re solving with Cupertino’s peers
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Average Time Spent per Day with TV and Mobile
Devices by US Adults, 2013-2020
minutes

270

153

132

I | I I 1 I | 1
2013 2014 2015 2016 2017 2018 2019 2020
BTV H Mobile devices

Note: ages 18+, time spent with each medium includes all time spent with
that medium, regardless of multitasking; for example, 1 hour of
multitasking on a mobile device while watching TV is counted as 1 hour for
TV and 1 hour for mobile device

Source: eMarketer, April 2018

238500 www.eMarketer.com




ThermiCam CIF 63M172. 168. 4. ¢ 80(y

Low detection accuracy

$10k-$20k

High price per device

Single Purpose

Siloed object detection capabilities




Boulder Al DNN Cameras:

Edge to cloud; no additional
hardware.

Privacy first sensors. Metadata
anonymized at the source.

High compute. General purpose
deep learning. Continuously
improving detection

0 90%+

High detection and tracking accuracy

_ ) Priced to scale

Volume pricing for PoC and scaled deployments

) Many objects

Detect, track and count many city objects with one device

Dot L 1%



() 2 o

Sensors acquire raw video On-camera analytics extract valuable Boulder Al structures software services
metadata from video on metadata from video
Pedestrians 3 Near misses
Emergency response
Cars
Intersection timing
Bikes Pedestrian safety
Freight Sanitation demand
. Lane occupancy
Public Transport >
Traffic mix
Carts HAZMAT Vehicles
Scooters Rideshare compliance
Parking occupancy
Strollers .
Cyclist/scooter safety
e Boulder Al standard e Object detection, counts, e Software (edge or cloud) built
hardware platform position and speed data. on metadata or additional

(DNN Cameras) e Live and recorded video analytics



e Growth.

2x population increase since
1990 (Denver Metro Area)

e Multimodal.

Massive rideshare adoption,
changing multimodal fleet.

e Technology.

Distracted drivers on busier
intersections.

N L4
:I: DENVER TRAFFIC FATALITIES OVER TIME

61 PEOPLE
DIED IN 2018

2011 2012 2013 2014 2015 2016 2017 2018

A 4
:I: 2018 TRAFFIC DEATHS VS MODES

DEATHS

COMMUTERS

32%

4%
PEDESTRIANS MOTORCYCLES

10% 1%

*Motorcyles are Included In a larger percentage of “Other” modes of transportation.



Overall Accuracy

3 month milestones:

e Determine ped crosswalk occupancy
e Count and track peds (anonymously)
e Make live data available to signal
controller
ovi 160% 80% 95%
0 +12000

Number of Labeled Images

-
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BoulderAl

Filter by:

Combining the best of edge
and cloud:

e Search objects, not
video.

e Explore your datain a
rich dashboard with real
time video, real-time GIS
object view.

e Download video clips of
important events for
context.






Camera networks provide metadata

Networks of Boulder Al cameras provide private
data about objects, vehicles, speed, and position.

Layer services on top of metadata

Rideshare cars and Lane occupancy
scooters Traffic mix
Pedestrian needs Hazards in road
Intersection danger Parking occupancy and
Emergency response  violations

NVIDIA. Sanitation service Intersection timing
demand HAZMAT vehicles

Bicycle safety

@ Help Cupertino define a digital infrastructure for
operations and growth
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acCLima.

Environmental intelligence
for people and the planet

Aclima Introduction - Cupertino City Council
January 2020




92% of the

global

population
breathes
unhealthy air,
each day

© 2019 ACLIMA INC.

CONFIDENTIAL

FINANCIAL RISK
Healthcare costs,
property value,
liabilities

HEALTH RISK
COPD, Asthma, cardiac disease,
miscarriage, dementia

ENVIRONMENTAL

RISK

POLITICAL RISK
Public sentiment,
environmental justice

O acuma.

CLIMATE RISK
liabilities, policy risk,
consumer
sentiment



O acuima.

We can’t manage
what we don’t measure

San Fraaciscu

82
Daly,City

Limited coverage Low resolution
| | |
Regulatory data today

© 2019 ACLIMA INC. CONFIDENTIAL




Hyper-local _
is the future

" NO, concentration (ppb)
J [ <26

f []26-38
38-51



O acuma.

A unified platform

1 2 3 4
Mobile & End-to-end network Data Management + Software Tools Data integration for
Stationary Sensors management Analytics Intuitive software tools diagnosis + action
Best-in-class Unprecedented scale + Synthesis of Aclima and for experts and citizens Wind, land-use, health
data quality block-by-block resolution, via integrated third party to drive action data and more
multi-pass driving data to derive insights

© 2019 ACLIMA INC. CONFIDENTIAL
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O acuima.

High quality data, lower cost sensors

Comparable Performance

— REFERENCE REFERENCE

— SENSOR : High-Cost, Low-Density

CO (ppm)

SENSOR S

Low-Cost, High-Density \46 Qs)

CONFIDENTIAL




O acuima.

Den access arti
d recistributios

under an ACS A.J ‘Vul(‘ cice License, which
e or any adapt: or nen-commercial pi

Backed by scientific QRONmETAL =
r i g o r a t ev e ry st e p E;g?;ﬁf:;lg’:igog :ti; Pollution Mapping with Google Street View Cars:

Joshua S. Apte,* ot Kylc P. Messier,"* Shahzad Gani,” Michael Braucr, Thomas W. K.u'chstettcr
Melissa M. Lunden,™ Julian D. Marshall,* Christopher . Portier,” Roel C.H. Vermeulen,”
and Steven P. Hamburg

"Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712 United States
*Environmental Defense Fund, New York, New York 10010 United States

$School of Population and Public Health, University of British Columbia, Vancouver V6T 1Z3 Canada

'Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States

~Aclima, Inc., 10 Lombard St, San Francisco, California 94111 United States

*Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195 United States
Vinstitute for Risk Assessment Science, Utrecht University, Utrecht 3584 CM Netherlands

E/[alﬁlegie
ellon
University GSA

© Supporting Information
S TA N F O R D ABSTRACT A.u' pol.luuon affects billions of people worldwide,
yet are limited for much of the
world, Urban air pollution concentrations vary sharply over short
distances (<1 km) owing to unevenly distributed emission
sources, dilution, and physicochemical transformations. Accord-
ingly, even where present, conventional fixed-sit 11

monitoring methods lack the spatial resolution needed to

G i
A characterize heterogeneous human exposures and localized -
freeeee UL pollution hotspots. Here, we demonstrate a measurement * - IL
approach to reveal urban air pollution patterns at 4—5 orders of 3, 10t gata QA& -

magnitude greater apatu.l prccmon than pusslblc with current poits  —p reduction 1 Stable 30m air quality maps
BERKELEY LAB central-site ambi We equipped Google Street Sigocbu
View vehicles with a fast- rcsponsc pollution measurement

latform and di led every street in a 30-km® area of Oakland, CA, developing the largest urban air quality data
set of its type. Rnsulung maps of annual daytime NO, NO,, and black carbon at 30 m-scale reveal stable, persistent pollution
patterns with surprisingly sharp small-scale variability attnbutablc to local sources, up to $5—8X within individual city blocks. Since
local variation in air qualxty pmfaundly impacts public health and environmental equity, our results have important implications
for how air poll | and 1. If validated elsewhere, this readily scalable measurement approach could address
major air qua.hty data gaps worldwide.

P> Maastricht
o University

THE UNIVERSITY
OF ARIZONA.

)

© 2019 ACLIMA INC. CONFIDENTIAL



O acuma.

D ive rse Diversity Experience

40% women
50% women in leadership

expertise in
every domain

o~ .
'€ € zipcar ‘

b T=TE
CISCO. ===7= [

e

Diverse team comprised of

domain experts from world-class
organizations, with a history of
building impactful solutions at scale.

"+ THE CLIMATE
7)) CORPORATION

Bound by a shared mission to build
a global, multi-billion dollar business
that drives humanity forward.

@/ amazon

WORLD BANK

© 2019 ACLIMA INC. CONFIDENTIAL



O acuima.

Measuring what
matters

e Carbon Dioxide (CO,) ‘ ; RN > ,
e Carbon Monoxide (CO) : -/ LosAngeles
e Ozone (O,) TSN
e Nitrogen Dioxide (NO,)

e Nitric Oxide (NO)

e Particulate Matter (PM, )

e Black Carbon
e Methane (CH,))
e Total Volatile Organic Compounds (TVOC)

© 2019 ACLIMA INC. CONFIDENTIAL




Aclima advantage,
from the user
perspective

Customer problem: “/ need to
understand hyper-local air quality
across my city.”

EXISTING TECH

STEPS (~months to years)

1.

10.

1.

Determine what to measure, at
appropriate levels of detection to
answer user questions

Source and purchase suitable
hardware from multiple vendors
Locate appropriate site(s) for
continuous monitoring

Establish QA/QC plan

Permit and install hardware,
protecting from the elements
Establish cloud based systems and
scientific data structures to ingest,
manage, calibrate, harmonize and
analyze data

Hire trained atmospheric scientists to
manage hardware

Hire data scientists to interpret
results

Hire UI/UX designers to visualize
large-scale scientific data sets

Hire field team to maintain, replace
and calibrate sensors

Build atmospheric models to
translate stationary data into
high-spatial resolution outputs

O acuma.

ACLIMA

STEPS (~minutes)

1.

Subscribe to Aclima Pro



O acuima.

Environmental N
Intelligence tools decisions
Aclima SaaS products empower users [

with best-in-class environmental data

, Aclima Licensed
and analysis tools

Software

Licensed Aclima software applications T
are populated with Aclima hyper-local ‘

data, in addition to stationary air quality

monitoring data from Aclima and 3rd
party sources

Aclima Data

Products 3rd Party Data

© 2019 ACLIMA INC. CONFIDENTIAL



O acuma.

Aclima Pro

Layers

Black Carbon

Executives and technical staff at
cities and regulatory agencies
ask:

What is happening in the vast
majority of my jurisdiction
that | cannot see?




O acuma.

Aclima Pro

Network operations teams
within natural gas utilities ask:

Are problematic leaks
forming in my gas
distribution system in
between survey cycles?



O acuima.

O acLima
o INSIGHTS
San Diego
ACI I m a fo r Aprg}L—June 201 9 O acuma San Diego
= N Enter a San Diego address or ZIP Code to

[ J [ J
Communities 2o

. s S
Free app for allows the general public T ad inpd @ San Diego City Hal
tO aSk - 1 : @ April - June 2019
N g Why this score?
How does air quality impact me and oy 5 R

_) Higher than ideal Ozone

sy

|
\
L l

my family at our home, and in our
community? How can | act to make
a difference?

Nearby Places

2mi Waterfront Park

© 2019 ACLIMA INC. CONFIDENTIAL



O acuima.

Data Products

Aclima methodology reveals persistent elevated pollution

. levels at hyper-local resolution.
Annual & Quarterly Baseline

Collection results in stable median baseline values for
each road segment during the collection period

Multi-pass Approach
Achieved through repeated driving of target geography

Rigorous Statistical Sampling Design
Passes distributed across time of day, day of week, and
collection period

Methane Enhancement (ppb)

Road Segment Position (km)

© 2019 ACLIMA INC. CONFIDENTIAL



Google Cloud: Stable, scalable & resilient

DATA COLLECTION

Aclima Mobile
Mapping Data

Aclima & 3rd party
stationary sensor data

Customer & 3rd party data

BACKEND PLATFORM

Ingestion & Pre-Processing
. @ @
@ NSQ Cloud Storage Cloud

Go HTTP

Pub/Sub

Functions
Python
Worker P

Go Python
el Data Lake

Product Store, 9

Servers & Interfaces

v- (® mapbox

Elasticsearch

Front End

S

NodeJS/React

Device Data DataProc/

Hadoop
g Data Analysis

TileServer MySQL/ Postgres Pipeline

Cloud SQL
APL

=X Jor

Kubernetes  Container CircleCl Docker
Registry

Python 3

O acuma.

PRODUCTS

Aclima Pro

O acuma

+ INSIGHTS o

San Diego Communities

| March - June 2019

Aclima Citizen App



O acuma.

Diagnose

O 6

IDENTIFY UNDERSTAND REVEAL INTEGRATE
HOTSPOTS & GREENHOUSE EXPOSURE LAND USE
SOURCES GASES

Act

TARGET ENGAGE TRACK OPTIMIZE
INTERVENTIONS COMMUNITIES PROGRESS INVESTMENT

© 2019 ACLIMA INC. CONFIDENTIAL
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O acuima.

Rapidly Expanding
Coverage

Aclima is contracted with growing number of
California public sector users:

Bay Area (BAAQMD)

County of San Mateo

LA Metro (SCAQMD)

San Diego County (SDAPCD)
California Air Resources Board (CARB)

In the Bay Area, the Aclima fleet is currently
deploying region-wide — will map indefinitely

Current Aclima deployments
High population density areas

© 2019 ACLIMA INC.



v Aclima Hyperlocal

5 Fkanks Tract State
“<< X ;:;i‘,. & Rirc:;:}lw\cm‘\mm @
acLimae Lagunitas xMarti‘rl1ez“) t(‘ “ = L il
Santa Venetia N 7 J ) ol
S ‘ ;
. . San Rafael 0! sGoncord < 3+ .
Cupertino Presentation PSR LT ;
p 2 ‘P[e‘ésangﬁghly C18%ton _ =il , 59 ©
LAk ﬁ/l peak ) g#Brentwood—|
i o BN T
Paradise Cay e ; S '}%

PN MotinDigblo s ) _jug__
} § &#g )\

§§ % j‘; & 7 1:1 S
< Dé‘,/ ViLES . Blackhawk I
N B U _
San.Ramm ol ks = — Mountain House
~‘~ O\ 1“@"" R ( \/
o P Y lon IR Banta
>4 Y Gl P Z = T
é WEAY ” 7~ racy

pa. iy | .“hb R ¥ -

o e 5 by ;QA Q,gw,

) / > ‘Q}.Dd’blln A et ? Carhon
oValley e 3 AT ’arbona
i = % ;{ {é I'_|verm_®r<a

rd?” S ?éz‘@.‘ |
“%;%‘ Rleasanton, 1 6@
WA St |

Kilkare Whods!
\ Q'

Suhol Del Valle Regional Park

Ramcho Corral de
%idrra (GGNRA)

=

) Milpitas
> AQMIS Stationary

+ Import Data

East Foothills

j San José
Cupertino

Ashrama
Campbell

Saratoga
Peseadero

(@ mapbox \

© Mapbox © OpenStreetMap | ‘

| ne Gatne



O acuima.

Serving Cupertino

Aclima is excited to deliver innovative services to
enhance community wellbeing and support Cupertino’s
Climate Action Plan goals through:

e Access to hyper-local air quality data and Aclima
Pro analytical tool

e Working with city staff to fully understand needs
and align product roadmap to meet them
Release of Cupertino-specific public experience
Support from Aclima scientific staff to assess
implications of hyper-local data and insights

© 2019 ACLIMA INC. CONFIDENTIAL









Replica
Change the way you

see your city move.




THE OPPORTUNITY kgp&c@
At the Center Of THE TRAVEL-DEMAND MODEL

many important

transportation and

land use decisions

" SEND A HIRE COLLECT CALIBRATE VALIDATE
IS A travel-dema nd PAPER SURVEY CONSULTANTS THE DATA THE MODEL THE MODEL
model.
Send a paper Hire consultants, Spend 1-2 years Spend 1-2 Certify or validate
survey to who will spend collecting traffic years the model 7-10
approximately the next 3-5 and transit counts calibrating years after the
The development of a travel-demand 0.5% of the years building to calibrate the model primary data
model can take upwards of ten years region's the model the model was collected
PR population

rendering it nearly useless by the time

it has been certified.
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THE OPPORTUNITY

No single source
of data is a silver
bullet for
understanding
movement.

MOBILE
LOCATION
DATA

CONSUMER
/ RESIDENT
DATA

LAND USE /
REAL ESTATE
DATA

CREDIT GROUND-TRUTH
TRANSACTION DATA




OUR SOLUTION kep&w
Complete, accurate and representative turn-key solution.

MOBILE LOCATION CENSUS GROUND-TRUTH

DATA

We use mobile
location data
to create Al
model of travel
behavior
(Personas)

SURVEYS

We use census
surveys to
create 100%
representative
synthetic
population

of each area

DATA

We use
ground-truth
data including
traffic counts
and transit
boardings to
calibrate our

simulation

PERSONA SIMULATION & CUSTOMER
MATCHING CALIBRATION DEPLOYMENT
Al models assigned to ’ -
synthetic households, ' consistent micro- in Explorer, our
preserving privacy simulation of easy-to-use
movement querying tool

Complete internally The model is accessible

Replica | Sidewalk Labs | Proprietary & Confidential 66



OUR SOLUTION kqa&'aa
Meet Replica.

& KC Streetcar [2)
A Shared, fu“y_calibrated platform for ansas City Jan - Mar (Thursday) ~ [J Census Tracts - 2 b4 . —
monitoring the movement of people B e : o g
) ) o ~2.3k trips by Census Tracts ®
and goods in a privacy-sensitive way. ~2.2K residents, daily \
Q TripDestination ) @ Transit Routes €3 %3""’/%& I
We deliver 4 models a year with (s e \\j;~

data for every day of a typical week.

Understand which modes, transit

lines, roads and streets people
are using.

Explore why people are traveling.

Activities are modeled second-by-
second with parcel level precision.

Demographic info including income

and age while protecting privacy

High-fidelity visualizations of data
on the map with choropleths, line
maps and more.

1 transit routes selected RESET
~2.3k trips

SHOW MORE

e Tip Purpose

@© StartTime

A Where People Live

@ Where People Work

SO $30k $60k $90k  $120k $150!

“

K3

rd /§

@
[
2 Wimst
3 (]
BNSF 19th
Street Yard
3 &g
2 &
s BNsF 1o/ &
= Street Yard @

Avenida.Cesar.E+Chavez
i

J;

A9th st

Brooklvn Ave

E25thst

H s \ 3
£ © Mapbox © OpenStreetMap Improve this map

Replica | Sidewalk Labs | Proprietary & Confidential
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Replica
QUESTIONS







QUESTIONS?
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