Report of Results from Structural Analysis and Evaluation of Existing Cupertino City Hall

Examining Structure's Compliance with 1985 Uniform Building Code as an Essential Facility

Prepared for

The City of Cupertino

November, 2011

Prepared by

AKH Structural Engineers, Inc. Consulting Structural Engineers

1505 Meridian Avenue, Suite B San Jose, California 95125 Ph: (408) 978-1970, FAX: (408) 267-7919 Web: www.AKHSE.com

AKH Project No. M11-040

CONTENTS

Introduction	1	
Building Information	2	
Key Building Plans		2
Analysis Approach and Applied Concepts	4	
Original Design Engineer's Project File Documents for 1986 Building Alterations Structural Modeling Building Codes Seismic Force Levels Essential Facilities and Seismic Importance Factors Existing Concrete Strengths Comparison of Required Seismic Design Forces in 1985 & 2010 Codes Varying Lateral Force-Resisting System Types Vertical Re-Distribution of Seismic Forces Apparent Errors Found in 1986 Analysis and Design		4 4 5 5 5 5 6 6 6 7
Analysis of Existing Concrete Floor Girders Determination of Possible Causes of Visible Cracks Concrete Joists Concrete Girders Possible Causes of Cracking	8	8 8 9
Summary of Identified Structural Deficiencies	10	
Deficiencies Due to Calculated Capacities Deficiencies Due to Prescriptive Code Requirements		10 11
Potential Means to Mitigate Noted Deficiencies	12	
Possible Non-Compliance with 2010 Building Code	14	
Summary of Applied Seismic Design Force Factors	14	

Appendices

- Structural Calculations prepared for this analysis by AKH, dated September 2011.

- Original structural calculations prepared by Kirk McFarland Engineers, dated 1965.

Introduction

The original Cupertino City Hall building was designed by San Jose architect, Wilfred Blessing, in 1965. Mr. Blessing retained the firm of Kirk McFarland Engineers, Inc. (KME) to perform the structural engineering, in accordance with the 1964 Uniform Building Code. A building permit was issued on December 2, 1965 and construction by Pursely Construction Company of Sunnyvale was completed a year later on November 19, 1966, at a cost of \$433,600. Notice of Completion was filed with the Santa Clara County Recorder's office on December 2, 1966.

Two employees of KME at the time were Dennis Ahearn and William (Bill) Knox. Bill Knox prepared a significant portion of the structural calculations for the building, and prepared and supervised the preparation of the structural drawings, from which the building was constructed.

In 1970, Dennis Ahearn left KME and opened his own engineering firm. In 1973, Bill Knox joined Dennis Ahearn's firm as a partner, at which time the firm became Ahearn and Knox, Inc. In 1983, Tim Hyde joined the firm, later to become a partner in 1993, after which, the firm's name became Ahearn, Knox & Hyde, Inc. The firm is in business and practicing structural engineering in San Jose today, now known as AKH Structural Engineers, Inc. (AKH). All three partners are still active in the firm.

In 2005, the Cupertino City Architect, Terry W. Greene, contacted Bill. Knox to investigate the feasibility of adding a second floor to the existing building, taking into account the 1986 remodel and structural upgrades provided by the architectural firm of Holland, East & Duvivier (HED), with Cygna Consulting Engineers of San Jose, as the structural engineer of record. The 1986 upgrade had been undertaken to qualify as an Essential Facility, meeting the requirements for such in the 1985 Uniform Building Code, to allow for the inclusion of an Emergency Operations Center to be constructed in the then-unused basement.

Mr. Greene sought out Mr. Knox for his structural expertise through the architectural firm of Sugimura & Associates Architects, located in Campbell, California, not knowing that Mr. Knox had been directly involved in the design of the original building. After learning of Mr. Knox's involvement in the original design, his continued review of the 1986 remodel was deemed very valuable. Bill Knox prepared a report of the City Hall building's seismic capacity on April 6, 2006 and delivered it to Gene Sugimura who then provided it to Terry Greene at City Hall.

Mr. Greene received a preliminary report from Bill Knox in November of 2005, which became the basis for a staff report by Mr. Greene to the Director of Public Works in December of 2005. Mr. Knox later produced a re-cap of the report, in April of 2006 and transmitted that re-cap to Gene Sugimura. Mr. Sugimura then transmitted the re-cap with calculations, to Mr. Greene on April 6, 2006.

Between April 2006 and July 2011, the City of Cupertino did not act on the recommendations in Mr. Knox's report. In June of 2011, the City approved a Civic Center Master Plan project for the FY 2011/2012 CIP. Mr. Greene subsequently contacted Tim Hyde of AKH to provide a new, comprehensive review of the City Hall building's seismic capacity, especially with regard to the compliance with the 1985 Uniform Building Code, as required for an Essential Facility.

Results and findings from the recent, 2011 analysis follow below. The analysis includes the review of construction data that was not utilized in the 2005 review.

Key Plans

Upper Level:

(Note: Not to scale)

Lower Level:

(Note: Not to scale)

Original Design Engineer's Project File:

As indicated above, Bill Knox and Dennis Ahearn were former employees of Kirk McFarland Engineers, Inc., the Structural Engineering firm that performed the original design of the City Hall building in 1965. Fortunately, KFE's project file for the building's original design was given to Bill Knox and Dennis Ahearn several years ago. Thus, we have some original calculations, testing results, shop drawings and other miscellaneous written correspondence for the project's original design and construction. As part of the project file, we also have the original structural drawings, dated 1965.

We have been able to utilize these documents, including the calculations and shop drawings, to help determine and confirm certain properties of the building, such as material weights and original design assumptions and loading.

Documents for the 1986 Building Alterations:

We are in possession of the structural drawings and calculations prepared at that time by Cygna Consulting Engineers, and have referenced these documents when necessary to confirm certain conditions and design intent.

Structural Modeling:

For our analysis, the Cupertino City Hall structure was modeled in the ETABS computer program, which is a Finite Element Analysis (FEA) application. The model was utilized to determine the seismic forces distributed to the concrete shear wall elements above and below the grade-level floor slab. The use of the FEA program is not inconsistent with the design requirements in the 1985 Uniform Building Code. The program allows for more accurate modeling of the various wall elements, especially those with openings along grid lines 5 and 5.5.

As the wood-framed roof is considered a "flexible diaphragm," the lateral seismic forces at the Upper Level were determined outside of the ETABS program by separate calculation, based on tributary areas to the wall lines. Those forces were then applied to the lines of shear walls in the ETABS model. ETABS distributes those forces to the walls along each wall-line according to the walls' relative rigidities. As steel beams occur along the wall lines, act as collectors/drag struts and connect all of the walls together, this assumption is accurate.

The Lower Level seismic forces were applied to the ETABS model at the grade-level slab, and the total of all forces were then distributed to the all of the Lower Level concrete shear walls, based on their relative rigidities, resulting from direct forces and accidental torsion forces, as required by the 1985 UBC for rigid diaphragm structures.

The walls along grid lines 5 and 5.5 were modeled to reflect their actual configurations, with regard to openings, thicknesses and support conditions.

Building Codes:

The scope of this evaluation includes assessing the structure using seismic forces required in the 1985 Uniform Building Code (UBC), as this was the Code to which the 1986 alterations were designed. As we know, the Building Code has evolved and undergone numerous revisions since that time. As requested, this report presents the results of our analysis with respect to the 1985 UBC. However, in order to provide an overall comparison, the primary force levels required in the 1985 UBC will be compared to the analogous forces required in the current, 2010 California Building Code (CBC).

Seismic Force Levels:

Simply, the lateral seismic force, or Base Shear, for which a building is designed, is merely a percentage or fraction of the building's weight. That percentage is determined by several factors, including (a) the seismic zone in which the building is located, (b) the geologic conditions and soil types present at the site, (c) the building's structural systems that resist the seismic forces, and (d), the intended of use or occupancy of the building. Essential Facilities have occupancies that affect this portion of the Base Shear equation.

Essential Facilities and Seismic Importance Factors:

Essential Facilities are those that must remain operational for emergency purposes, such as after a major earthquake or other disaster. These structures would be designed to resist higher seismic forces and are reflected in the Importance Factor, which is applied to the overall Base Shear force. The Importance factor for most residential and commercial buildings is 1.0. The Importance Factor for Essential Facilities is typically higher than 1.0.

From the 1976 UBC to the 1985 UBC, the Importance Factor for an Essential Facility was 1.5. In the following, 1988 UBC, the Importance Factor was reduced from 1.5 to 1.25, effectively reducing the seismic forces for which this type of Essential Facility would be designed, as compared to the previous 1985 UBC. The Importance Factor for Essential Facilities remained 1.25 for the primary elements in the seismic-force-resisting systems, until the 2007 CBC when it changed back to 1.5 and remains as such in the present 2010 CBC.

Existing Concrete Strengths:

The McFarland project file contains numerous concrete compression test results for the various concrete elements in the building, at both the upper and lower levels. The minimum design compressive strength for the structural walls was specified to be 3,000 psi. All of the test results for the wall concrete indicate that the lowest compressive strength at 28 days is 3,490 psi, with the mean value being over 4,620 psi. Based on these results, we have used a concrete strength of 3,500 psi throughout our analysis. Where deficient conditions are found to exist, they were based on this concrete strength. The yield strength used for the reinforcing was 40 ksi. This value is confirmed by test results for the reinforcing found in the original project file.

Comparison of Required Seismic Design Forces in 1964, 1985 & 2010 Building Codes:

1964 Uniform Building Code:

Force levels expressed at Allowable Stress Design (ASD) levels. W = Weight of structure. Upper Level: F_{EQ} = 0.133 x W = 0.13 x W at Upper Level

Lower Level considered subterranean and not included in seismic design.

1985 Uniform Building Code:

Force levels expressed at Allowable Stress Design (ASD) levels. Building designed as an Essential Facility; Importance Factor, I = 1.5. Upper Level: $F_{EQ} = 0.14 \times 1.5 \times W = 0.21 \times W$ at Upper Level Lower Level; $F_{EQ} = 0.19 \times 1.5 \times W = 0.28 \times W$ at Lower Level

2010 California Building Code, which References ASCE7-05:

Force levels expressed at Allowable Stress Design (ASD) levels. Redundancy factors of 1.3 for Upper Level and 1.0 for Lower Level are included. Essential Facility, reflected in Occupancy Type and Structural Design Categories. Upper Level: FEQ = 0.21 x 1.3 x W = 0.27 x W at Upper Level Lower Level: FEQ = 0.27 x 1.0 x W = 0.27 x W at Upper Level

Comparing Base Shear force magnitudes for 2010 CBC over 1985 UBC: For the Lower Level, there is no increase in applied seismic force

Varying Lateral Force-Resisting System Types:

The 1988 UBC, issued immediately subsequent to the 1985 Code, included certain provisions for the vertical distribution of seismic forces when the lateral force-resisting systems varied at each level. In this building, the upper-level shear walls do not support a significant portion of vertical load, whereas the shear walls at the Lower Level (Basement) do support significant vertical dead and live load. This difference results in different overall seismic factors for each level. The 1988 UBC and later Codes require that the seismic forces from the upper level be scaled up in proportion to the corresponding seismic factors when applied at the lower level. However, the 1985 UBC did NOT include these provisions. Thus, our analysis does not include these provisions, even though the approach required in the current Code would require this more-conservative scaling of forces.

Vertical Re-Distribution of Seismic Forces:

The Building Code requires that a building's seismic forces be distributed over its height, based on a weighted average of each level's combined weight and height above the base. This is a generally accepted means of accounting for the momentum generated by the upper levels moving in an earthquake, perceived as a "whipping" action. For structures that have levels substantially below adjacent grade, those subterranean levels are not included in the vertical re-distribution as their lateral deflections are dampened by the surrounding earth. In addition, the subterranean portions are typically much more rigid laterally than the superstructures above. For these reasons, such a building's base is considered to be at grade level for the purpose of vertical force re-distribution.

The 1986 alterations to the subject building exposed one full side of the structure that had previously been below adjacent grade. One could argue that the building's lower level should subsequently NOT be considered subterranean, and that the structure's lower level should be included in the vertical distribution of forces.

The stiffness of the lower level, with long shear walls, is substantially higher than the upper level, which has relatively short shear walls and a lower overall stiffness by inspection. In addition, for the most critical wall along grid line 5, which was exposed by excavation and received multiple openings in the 1986 alterations, would receive lateral, in-plane seismic forces when the lateral, seismic forces are acting on and perpendicular to the sides that remain below adjacent grade, moderating the lateral drift and the forces reaching the wall on line 5. Also, seismic forces acting perpendicular to the wall on grid line 5 would be resisted by the long, rigid shear walls at lines A and F, and would not be resisted by the altered wall on grid line 5.

For these reasons, the subterranean, lower level is not included in the re-distribution of lateral seismic forces. A review of Cygna's calculations confirms that this was the same methodology used in their analysis, performed in 1986.

Apparent Errors Found in 1986 Analysis and Design:

The design calculations for the 1986 alterations utilized incorrect tributary areas and/or unitweights to determine tributary building masses, resulting in calculated masses at both the Upper and Lower levels that were significantly less than represented by the actual conditions. These masses relate directly to the seismic forces for which the building was designed to resist, including the shear walls and the diaphragms.

For example, the effective areas of roof that include the heavy roof tiles were significantly less than the actual areas tributary to each shear wall line. In addition, the six-foot-high parapet, which also supported the heavy roof tiles, was ignored completely in the determination of the building mass at the Upper Level. Also, at both levels, the masses of the concrete walls perpendicular to the direction of seismic force in consideration were not included in the effective building mass.

The 1986 analysis incorrectly calculated the respective masses as follows:

- Upper Level: Underestimated mass by 45% to 59%, depending on direction considered
- Lower Level: Underestimated mass by 24% in either direction considered
- With respect to the overall building, the underestimates amount to approximately 34%.

Determination of Possible Causes of Visible Cracks:

Some narrow cracks are apparent in the existing cast-in-place concrete floor girders at grade level, over the basement. None of the visible cracks are of widths that are considered significant with respect to the members' ability to resist the supported loading.

We have analyzed the subject girders as well as the smaller concrete joists that are supported by the girders.

It should be noted that reinforced concrete members MUST crack in order to facilitate load transfer to the steel reinforcing, and for the steel reinforcing to provide the resistance to applied loads as designed. Typically, the cracking that occurs is spread throughout the concrete members, and thus, the cracks are smaller than what can be observed visually. In other cases, certain conditions can cause a concentration of strain and the resulting release of stress causes visible cracks. However, visible cracks, in of themselves, are not necessarily indicative of overstressed or deficient conditions.

Our analysis considered the required loading and design concepts in both the 1964 UBC, with regard to the original design of these members, and with regard to the current 2010 CBC, in order to ascertain any possible design criteria or other considerations that exist in the current Code, but that might not have been accounted for over 40 years ago.

There have been some minor revisions over time in the Code-required vertical loads for which these floor members would be designed. These include uniform loading for things such as partitions, live loads for certain occupancies and uses, and live load reductions allowed based on tributary areas being supported by the respective members. In general, the design loading in exit facilities, such as corridors and lobbies, have remained constant at 100psf. Live loads for office areas have also remained constant at 50 psf. Live loads in assembly areas with fixed seating have increased from 50 psf in the 1964 UBC to 60 psf in the 2010 CBC. Finally, the 1964 UBC did not require loading for movable partitions, where the current 2010 CBC requires a uniform load of 15 psf live load for moveable partitions. However, as was common at the time, the design of these members did include partition loading of 20 psf overall office areas.

There have also been significant revisions in the analysis and design of concrete members since the 1964 UBC. The subject concrete members have been examined in terms of the design concepts used in the 1964 Code, as well those used as the 2010 CBC, in order to determine what conditions, theoretically and practically, might be the cause of the cracks.

Concrete Joists:

The analysis of the concrete joists indicated that their capacities in shear and flexure are adequate for all loading conditions, in accordance with the 1964 and 2010 Codes.

Concrete Girders:

The girders were analyzed closely, with the appropriate magnitudes of loading applied as accurately as possible. All four lines of girders have been analyzed. In all cases, the girders have been found to be adequate to resist the calculated flexural moments (bending forces).

With regard to vertical shear in the girders, our analysis considering the 1964 UBC indicates that the amount and/or spacing of the shear reinforcing (stirrups) is adequate in all locations.

However, the intent here is to identify possible causes for the apparent cracks. Thus, we also analyzed the member shear according to the 2010 CBC requirements. In that case, our calculations indicate that the amount and/or spacing of the shear reinforcing (stirrups) is inadequate in certain locations. However, closer inspection of the Code requirements indicate that the shear reinforcing is adequate in the majority of cases, when based only on the actual shear stresses in the members.

Certain prescriptive requirements exist in the current CBC that were not included in the 1964 UBC. These requirements specify a minimum amount of steel shear reinforcing (ties or stirrups), which is based on the maximum stirrup spacing, and is dependent primarily on the members' cross-sectional areas, without regard to actual shear forces or internal stresses.

The magnitudes of girder shear are typically the highest near the supporting columns. Of the four north-south floor girders, according to the 2010 CBC analysis, the areas with excessive stirrup spacing occur along one girder on grid line C, which has a longer interior span between supporting columns, and supports areas of higher live load than the other girders. The three other girders also have some areas of excessive stirrup spacing based on the prescriptive requirements, but they are limited to areas immediately close to the columns.

Total shear resistance in concrete members is provided by two primary components. The first is the concrete itself, where the shear capacity is based on the concrete strength and the member's cross-sectional properties. The second component is the steel shear reinforcing (stirrups). The amount of reinforcing provided can be affected by the size of the bars used in the stirrups, and the spacing of those stirrups along the member's length. These two components combine to provide the total shear resistance, or shear capacity.

In some locations, typically at the ends of the longer girder spans, the spacing of the shear stirrups in the girders is excessive where based on the actual, calculated shear capacity needed in the girder. It should be noted that this is a calculated deficiency only when the applied loading represents the full live load over the majority of the member's tributary area. In the locations where the calculated shear demand exceeds the capacity, the girder is overstressed in shear by up to 21% in areas near two of the supporting columns. The overstress results from the shear stirrups being spaced too far apart in order to provide the necessary total shear capacity. In these subject areas, the spacing of the stirrups is approximately two-times the spacing needed to provide an adequate total shear capacity to meet the demand.

Possible Causes of Cracking:

Based on our close examination of the joists and girders, and the calculated flexural and shear stresses within the members, we have determined that the locations of the apparent cracks do NOT correlate with areas of higher flexural or shear stresses. Rather than resulting from overstress conditions, it is our belief that the observed cracking has likely resulted from one or more of the following long-term causes:

- 1. Soil consolidation and resulting settlement of the foundations below columns
- 2. Changes in moisture content in expansive soils below the foundations
- Shrinkage of the concrete due to curing over time
- Elastic, long-term deformation of the concrete, known as creep
- Concentrations or build-up of internal stresses being released by the numerous minor and moderate seismic events that the structure has experienced over its lifetime.

Summary of Identified Structural Deficiencies

All deficiencies listed below are with regard to the 1985 Uniform Building Code, unless indicated otherwise.

Deficiencies Due to Calculated Capacities:

These deficiencies have resulted from calculation that determined the capacities of the respective elements are less than the demand or applied designs forces.

A. Upper Level Concrete Shear Walls:

- 1. On Grid Lines 1 and 5: These walls are overstressed in in-plane bending, as much as 144%, meaning that the demand is approximately 2.44 times the capacity.
- On Grid Lines A and F: These walls are overstressed in in-plane bending, as much as 150%, meaning that the demand is approximately 1.5 times the capacity.

All Upper Level Shear Walls on All Grid Lines:

- 3. Based on the calculated compressive stress, the walls require Boundary Members at ends of shear walls. Boundary members are column-like elements with added vertical reinforcement and closely-spaced lateral ties that resist the high compressive forces induced by overturning demands in highly-loaded shear walls. At the ends of these walls not adjacent to a concrete column, no Boundary Members exist. This cannot be expressed as a magnitude of overstress, as the Code requirement is prescriptive. The magnitude of overturning forces in these shear walls requires Boundary Elements, but none are provided.
- 4. Based on the calculated shear stress, these walls require two curtains of reinforcing due to magnitude of in-plane shear stress. Only one curtain of reinforcing is provided in these 6" thick walls. This cannot be expressed as a magnitude of overstress, as the Code requirement is prescriptive. The magnitude of shear stress requires two curtains of reinforcing, but only one layer is provided.
- Anchor bolt connections for transferring in-plane seismic shear forces at top of walls are overstressed as much as 26%, meaning that the demand is approximately 1.26 times the capacity.

B. Lower Level Concrete Shear Walls - No Deficiencies. Comments only:

Shear Walls Along Gridlines 5 & 5.5. There appear to be no overstress conditions in the overall shear walls throughout the building, or in the individual shear wall elements on grid lines 5 and 5.5. The added reinforcing within the 6-inch-thick shotcrete added to the remaining wall segments on line 5 in 1986 allows these elements to satisfy the applicable Code requirements. It should be noted that the added columns, as parts of the arches constructed along grid line 5.5 actually resist relatively low forces, and are adequate for the forces acting on them. No deficiencies identified.

C. Roof Diaphragm Shears:

Currently, the calculated roof diaphragm shears exceed the shear capacity of the plywood sheathing significantly. The 1/2-inch thick plywood, with nailing as specified on the original drawings, has an allowable shear capacity of 325 plf. The calculated diaphragm shear is as high as 898 plf in the north-south direction, and 690 plf in the east-west direction, resulting in the demand being 2.76 and 2.12 times its capacity, respectively. This represents overstresses of 176% and 112%, respectively.

It should be noted that the drawings do not indicate that Structural I plywood was used, however, reference to Structural I plywood was made in some of the 1986 calculations performed by Cygna Engineers. If Structural I plywood were used, the allowable shear would be 360 plf, however, the overstress conditions would still be significant.

The plywood sheathing lies directly over 3x decking at the sloped areas of roof, which acts as "blocking" at the adjacent panel edges. Generally, this type of decking can also be assumed to resist 100 plf to 300 plf in diaphragm shear, depending on its orientation and nailing. However, even if a 300 plf value is added to the allowable plywood shear value, the roof diaphragm shears still exceed the combined capacity significantly near the diaphragm perimeter, and extending significantly inward toward the center of the building.

D. Diaphragm Chord Connections at Roof:

The connections between the steel beams near the roof's perimeter are overstressed approximately 35% in resisting the highest chord forces, which occur at the middle of the diaphragm. The calculated connection capacities account for the steel shear plates that were added as part of the 1986 alterations. The same connections are adequate to resist the critical collector drag forces, which occur nearest the ends of the concrete shear walls at the Upper Level.

Deficiencies Due to Prescriptive Code Requirements:

The two aspects of the building's design below are part of the original 1964 design and were likely in compliance with the Building Code at that time, but they do not comply with newer requirements in the 1985 UBC. In general, these issues do not necessarily relate to stresses or force-levels, but address prescriptive Code requirements, and thus, a graduated level of compliance cannot be indicated.

E. Concrete Column Ties:

The #2 (1/4"¢.) ties around the concrete column vertical bars are inadequate in size and spacing, especially for the upper and lower 20% of the column height, where the actual spacing provided is generally two times, or 100% greater than allowed by the 1985 UBC. Added, external confinement can be installed around existing columns such as these, but no such reinforcing exists.

F. Concrete Column Ties at Top:

The 1985 Code, in this seismic zone, requires that several added, closely-spaced ties be provided at the tops of columns surrounding embedded anchor bolts, but no such ties were provided in the original columns. Added, external confinement can be installed around existing columns such as these, but no such reinforcing exists.

Referencing pages 10 through 11 above, possible means for mitigation of the identified deficiencies are as follows:

Concrete Shear Walls:

A.1 and A.2 - Shear Wall In-Plane Bending:

The deficient bending capacities would typically be addressed by adding steel reinforcing at the extreme ends of the walls, which could resist more net tension induced by in-plane overturning or flexure in the shear walls. This could entail structural steel shapes fastened to the subject walls and extended down to the lower walls, or could include reinforcing added inside new concrete "column" elements, such as with shotcrete. Other methods could include thickening the walls over their lengths, partially or entirely, in order to reduce the tension demand at the wall ends. This could also be provided using shotcrete.

A.3 - Shear Wall Boundary Members:

New Boundary Members could include newly-applied concrete at the ends of the walls, and/or new steel members on the outside of the walls at the ends to provide the necessary stability under compressive loads induced by overturning.

A.4 - Second Layer of Wall reinforcing:

Providing a second curtain of wall reinforcing would require thickening the concrete walls, likely with applied shotcrete, and new reinforcing bars within.

A.5 – Anchor Bolt Connections at Top of Shear Walls:

New anchor bolts could be installed at the top of the walls directly through the existing beam flanges, or through added steel plates or angles welded to the steel beams.

B: Not a deficiency.

C - Roof Diaphragm Shears:

If the heavy Spanish tile roofing were to be replaced with composite asphalt roof tiles over its entirety, on the parapets and sloped roof areas, the correlating seismic force at the Upper Level, and overall, would be reduced significantly. The dead load occurring at the roof alone would be reduced by approximately 33%. This would also significantly reduce the total seismic force acting on the structure at the Lower Level as well. Although the roof diaphragm would still be overstressed in resisting Code-required seismic loading in smaller areas, the effects of using lighter roofing would be significant, and would likely greatly improve the building's performance and level of protection during a moderate or major earthquake.

As the capacity of the plywood roof diaphragm is dependent on the nailing of the plywood along the adjoining panel edges, the diaphragm capacity could be increased significantly with the addition of new nailing between the existing nails. Of course, access to the sheathing would be required. Thus, this method of strengthening the roof diaphragm could only be provided in conjunction with the removal of the existing roofing. As mentioned above, replacing the heavy, existing Spanish tile roofing with lighter roof tiles could yield

significant benefits in reducing the building mass and the resulting seismic forces on the structure. The combined effect of adding nailing to the existing plywood sheathing during the course of replacing the heavy tile roofing with lighter roof is obvious. Using reasonable assumptions as to weight of replacement roofing and maximum amount of added nailing in certain locations, the roof diaphragm shear capacities could be brought to within approximately 90% of the demand, reducing the overstress levels to approximately 11%.

D. - Diaphragm Chord Connections at Roof:

The subject connections could be strengthened with the addition of welding around the plates to the beam webs. This strengthening would be required in only limited places, near the middle of the building along each perimeter beam line, as the chord forces are the highest in the middle of the roof diaphragm, along the chords' lengths.

E. - Concrete Column Ties:

The columns' confinement could be increased through the use of external, surrounding "jackets." These could be of steel, concrete (shotcrete) or carbon fiber. The most costefficient and practicable method would likely be using carbon fiber layers applied with resin around each column for its entire height. This would have the least spatial effect, and would not increase the mass of the columns.

F. - Concrete Column Ties at Top:

As this aspect is similar to the deficiency noted immediately above, but more specific to location, means provided above to mitigate this issue would likely be the same. In fact, in the process of addressing the item above, this issue would be addressed and resolved as well.

End of Deficiency Mitigation

Possible Non-Compliance with Current 2010 Building Code

Editions of the Uniform Building Code since 1985, and more recently, the California Building Codes, have addressed redundancy and ductility in modern buildings' seismic-force-resisting systems. The design force equations in the newer Codes have undergone substantial revisions to more accurately reflect the various types of structural systems used, as well as the probability of major seismic events based on the fault types. However, the most significant revisions to recent seismic design requirements have been focused on ensuring better system performance in terms of the stability and ductility of members, especially when subjected to forces that are beyond the members' elastic range, or when elements undergo partial or complete failure.

At least six Building Code editions have been issued since the 1985 Uniform Building Code was published. Evaluating compliance of the Cupertino City Hall with respect to the most recent of these codes is beyond the scope of this analysis. However, it is expected that certain structural aspects of this building would be found not to comply with particular requirements in the current Code. And just as several aspects of the building have been found not to comply with the 1985 UBC, it is expected that more aspects would be found not to comply with the newer requirements in the most recent 2010 California Building Code.

Summary of Applied Seismic Design Forces

Comparative Seismic Force Factors for 1964 UBC, 1985 UBC and 2010 CBC:

W = Building Weight

According to 1964 Uniform Building Code:

Upper Level: $F_{EQ} = 0.133 \times W = 0.13 \times W$ at Upper Level Lower Level considered a subterranean basement and not included in seismic design. Essential Facilities not considered in 1964 UBC

According to 1985 UBC, as Essential Facility

Upper	Level:	FEQ =	0.14	x 1	.5	х	W	=	0.21	X	W	at	Upper	Level
Lower	Level:	$F_{EQ} =$	0.19:	x 1	.5	x	W	=	0.28	x	W	at	Lower	Level

According to 2010 CBC & ASCE7-05, as Essential Facility:

Upper	Level:	FEQ =	0.21	х	1.3	х	W	=	0.27	х	W	at	Upper	Level
Lower	Level:	FEQ =	0.27	х	1.0	х	W	=	0.27	х	W	at	Upper	Level

The 1.3 factor at Upper Level is the required Redundancy Factor. Comparing Base Shear force magnitudes for 2010 CBC over 1985 UBC: For Upper Level, there is a **30% increase** in applied seismic force over 1985 UBC levels For Lower Level, there is no increase in applied seismic force

Comparing Base Shear force magnitudes for 2010 CBC over 1964 UBC: For Upper Level, there is a 108% increase in applied seismic force from 1964 UBC levels. For Lower Level, the structure was considered a basement therefore no comparison is made.

End of Report

APPENDICES

The following Appendices to the Report are available at request: Structural Calculations for Analysis by AKH Structural Engineers, Inc., 2011 Original Structural Calculations by Kirk McFarland Engineers, 1965

(Maria)

APPENDICES

Structural Calculations by AKH

Structural Calculations by Kirk McFarland Engineers

Structural Calculations Cupertino City Civic Center

Project Number:	M05-036	Date:	October 2011
Project Engineer:	Ward	Code:	19 <u>85</u> UBC
Seismic Zone:	4	Wind Zone:	70 mph
Checked By:	Hyde	Date:	

Original Signature Required To Be Valid Seal

TABLE OF CONTENTS

Loads	G1 - G2
Lateral Analysis (computer print-out follows these pages)	L1 - L15

Girder Analysis

B1 - B2

Design References:

- Uniform Building Code, 1985 Edition
 Building Code Requirements for Structural Concrete (ACI 318-83)
- 3. Manual of Steel Construction, 8th Edition

STRUCTURAL LOADS

ROOF TYPE #1: Existin	g Tile Roof	S	lope, in/ft.:	4	
Material	Decking	Purlins	Beams	Seismic	
Spanish Tile Roofing	21.0	21.0	21.0	21.0	-
1/2" Plywood	1.5	1.5	1.5	1.5	
3x Decking	8.0	8.0	8.0	8.0	
Insulation	0.5	0.5	0.5	0.5	
Fire Sprinklers		4.0	3.0	2.0	
Ceiling - Suspended woo	5.0	5.0	5.0		
Purlins - 6x16 @ 6'-0" o.c		3.5	3.5	3.5	
Beams - 16B31 @ 24'-0"	0.C.		1.5	1.5	
Beams - 7"x19-1/2" Glue-	lam beam		1.0	1.0	
Miscellaneous	5.1	3.9	4.3	2.5	_
Sub-Total:	36.1	47.4	49.3	46.5	
Slope Factor	2.0	2.6	2.7	2.5	
TOTAL DEAD LOAD:	38.0	50.0	52.0	49.0	psf
					=

ROOF TYPE #2: Existin	Ig Built-up	loiete	Slope, in/ft.:	0.25 Seismic	
Poofing Built up gravel	6.5	6.5	6.5	6.5	-
1/2" Dhawood	0.5	0.5	0.5	0.5	
1/2 Plywood	1.5	1.5	1.5	1.5	
Insulation	0.5	0.5	0.5	0.5	
Fire Sprinklers		4.0	3.0	2.0	
Joists - 2x14 @ 16" o.c.		4.0	4.0	4.0	
HVAC Equipment		5.0	5.0	5.0	
Ceiling - Suspended woo	d w/ tile	5.0	5.0	5.0	
Beams - 21WF55 @ 24'-()" o.c.		2.5	2.5	
Miscellaneous	4.5	4.5	4.0	2.0	
Sub-Total:	13.0	31.0	32.0	29.0	
Slope Factor	0.0	0.0	0.0	0.0	
TOTAL DEAD LOAD:	13.0	31.0	32.0	29.0	_ps
					=

ROOF TYPE #3: Existing	g Covered	Walk	Slope, in/ft.:	2	
Material	Decking	Purlins	Beams	Seismic	_
Spanish Tile Roofing	21.0	21.0	21.0	21.0	
1/2" Plywood	1.5	1.5	1.5	1.5	
2x Decking	4.5	4.5	4.5	4.5	
Insulation	0.5	0.5	0.5	0.5	
Fire Sprinklers		4.0	3.0	2.0	
Purlins - 4x14 @ 6'-0" o.c.		2.5	2.5	2.5	
Beams - 16B31			1.5	1.5	
Beams - 10"x18" conc.			16.0	16.0	
Miscellaneous	4.8	3.9	3.6	1.7	
Sub-Total:	32.3	37.9	54.1	51.2	
Slope Factor	1.7	2.1	2.9	2.8	_
TOTAL DEAD LOAD:	34.0	40.0	57.0	54.0	psf

G1

FLOOR TYPE #1:

Material	Slab	Joists	Beams	Seismic	
Flooring	4.0	4.0	4.0	4.0	_
Concrete Slab, 3"	37.5	37.5	37.5	37.5	
Fire Sprinklers		4.0	3.0	2.0	
Ceiling		2.5	2.5	2.5	
Joists - 6"x12" @ 3'-0" o).C.	29.0	29.0	29.0	
Ribs - 6"x12" @ 24'-0" o).C.	3.5	3.5	3.5	
Beams - 16"x33" @ 24'-	0" o.c.		26.0	26.0	
Miscellaneous	4.5	4.5	3.5	1.5	
Sub-Total:	46.0	85.0	109.0	106.0	_
Partitions		20.0	20.0	20.0	
TOTAL DEAD LOAD:	46.0	105.0	129.0	126.0	psf
	Stud Walls		d Each Si	do	
WALL ITPE #1.		w/ Gyp Б0аг		ue	
	veignt				
Sluds @ 10 O.C.	1.5				
Gypsum Board	5.0				
Miscellaneous	1.5	<u>.</u>			
TOTAL WEIGHT:	8.0	pst			
WALL TYPE #2:	Stud Wall	w/ Spanish 1	File One S	ide & Plywo	ood One Side Mansard
Material	Weight			···· · · · · · · · · · · · · · · · · ·	
Stude @ 16" o c	2.5				
Spanish Tile Roofing	21.0				
1/2" Plywood 2 sides	3.0				
Built up Poofing cap	2.0				
Miscellaneous	2.0				
	30.0	nef			
TOTAL WEIGHT.	30.0	psi			
WALL TYPE #3:	6" Concret	e	75	psf	
WALL TYPE #4:	10" Concre	ete	125	psf	
WALL TYPE #5:	12" Concre	ete	150	psf	
WALL TYPE #6:	18" Concre	ete	225	psf	
LIVE LOADS: Floor					
Office Areas	50	psf			
Corridors & Lobbies	100	psf			
Assembly, Open	100	psf			
	0 - 200	201 - 600	> 600	sa ft	
Sione < 1.12	0 - 200 20	16	10	oy. il. nef	
Slope 1.12	20	14	12 10	psi	
Sidpe 4.12 $10 \le 12.12$	10	14	12	pol	
Slope > 12:12	12	12	12	psr	

LATERAL ANALYSIS & DESIGN

The building was originally designed in 1964 as a non-essential facility. The upper level of the building lateral system consists of existing wood roof diaphragm and concrete shear walls. The lower level consists of a concrete joist floor system over concrete walls & columns. The lower portion was originally a full basement. In 1986, modifications & upgrades were made to the building. The North side of the building was excavated to the depth of the basement and the North basement wall opened up to a new patio. The building currently houses the City's Emergency Operations Center and is therefore an essential facility.

Note: The following analysis is to verify that the existing building, including the 1987 modifications, is adequate as an essential facility under the <u>1985 Uniform Building Code</u>.

(A) ō SW5.1.4 SW5.1.5 SW5.1.1 SW5.1.2 SW5.1.3 SW5.1.6 9.33 5.67 6.25 6.25 5.67 9.33 105'-3" п п SWA.1.1 97'-6" SWF.1.1 97.5' 97.5' SW1.1.2 SW1.1.1 48' 24 SWC.1.1 SWE.1.1 15, 15, SW1-1.1.1 (1-1) 48 121'-0"

Earthquake Data: Seismic Zone 4 (UBC Figure No. 1)

LOWER LEVEL PLAN

Buil	dina	Mass:

Roof	Area	Unit Load	Mass		Roof height	h _r =	18	ft.
Flat Roof	3456	29	100224	_				
Tile Roof	8281	49	405769					
Walkway	5808	54	313632					
Mansard	1440	30	43200					
Ext. Walls	396	75	29700					
Partitions	11305	5	56525					
Columns	297	150	44550	_				
		Total w _r =	993600	lbs	==>	993.6	kips	
Floor	Area	Unit Load	Mass		Floor height	h _f =	12	ft.
Floor Floor	Area 14464	Unit Load 106	Mass 1533228	-	Floor height	h _f =	12	ft.
Floor Floor Ext. Walls	Area 14464 345	Unit Load 106 225	Mass 1533228 77625	-	Floor height	h _f =	12	ft.
Floor Floor Ext. Walls Ret. Walls	Area 14464 345 345	Unit Load 106 225 150	Mass 1533228 77625 51750	-	Floor height	h _f =	12	ft.
Floor Floor Ext. Walls Ret. Walls Int. Walls	Area 14464 345 345 1157	Unit Load 106 225 150 75	Mass 1533228 77625 51750 86738	-	Floor height	h _f =	12	ft.
Floor Floor Ext. Walls Ret. Walls Int. Walls Partitions	Area 14464 345 345 1157 11305	Unit Load 106 225 150 75 10	Mass 1533228 77625 51750 86738 113050	-	Floor height	h _f =	12	ft.
Floor Floor Ext. Walls Ret. Walls Int. Walls Partitions Columns	Area 14464 345 345 1157 11305 234	Unit Load 106 225 150 75 10 150	Mass 1533228 77625 51750 86738 113050 35100	-	Floor height	h _f =	12	ft.

SEISMIC FACTORS

Seismic Base V = ZIKCSW	e Shear:							
Z = =	1 1.5	(Zone 4 - F (Essential I	igure No. 1 Facility - Ta) ble No. 23-l	K)			
<u>At Upper Leve</u> K =	<u>el:</u> 1	(Framing S	system - Tal	ble No. 23-I)			
h _n =	18	ft.			D =	137	ft.	
$T = 0.05 * h_n /$	$(D)^{1/2} =$	0.077	sec.					
C = 1 / [15 * (T) ^{1/2}] =	0.240	>	0.12	Therefore, us	se C =		0.12
S =	1.5	(Soil Type	S₃ for unkn	own soil)				
CS =	0.18	>	0.14	, Therefore,	use CS =	0.14		
V =	0.210	W	1					
	0.2.0		1					
At Lower Leve	<u>):</u> 1 33	(Shear Wa	ll System -	Table No. 2	3-1)			
IX .	1.00		il Oyoteini		01)			
h _n =	12	ft.			D =	121	ft.	
$T = 0.05 * h_n /$	$(D)^{1/2} =$	0.055	sec.					
C = 1 / [15 * (T) ^{1/2}] =	0.285	>	0.12	Therefore, us	se C =		0.12
S =	1.5	(Soil Type	S ₃ for unkn	own soil)				
CS =	0.18	>	0.14	Therefore,	use CS =	0.14		
V =	0.279	W]					
Elements of $F_p = ZIC_pW_p$	Structur	es: Wall S	eismic Fac	tor:				
C _p =	0.3	(Bearing W	/alls - Table	e No. 23-J)				
F _p =	0.450	W _p]					

Diaphragm & Collector Seismic Factor:

 $F_{px} = (\Sigma F_n / \Sigma w_n) w_{px}$

For one-story building, $F_{px} = V$	V for Upper Level
--------------------------------------	-------------------

F _{px} =	0.210	W _{px}	<	Max. F _{px} =	0.450	W _{px}
F _{px} =	0.210	W _{px}	=	Min. F _{px} =	0.210	W_{px}

 $F_{px} = 0.210 \quad W_{px}$

Upper Level Seismic Loads:

Wood frame roof with plywood diaphragm. Concrete shear walls.

Height H = 12 ft. Note: All wall thicknesses t = 6 in. Note: Wall rigidities are of fixed-fixed walls: $R = t / [0.1(H/L)^3 + 0.3(H/L)]$

			1, 10, 10,	<i>п</i> с) • 0.0(I	~ – /]				
	Wall	Length L	Rigidity	Relative R		Wall	Length L	Rigidity	Relative R
	SW1.2.1	7	5.893	0.5		SWA.2.1	8.5	8.512	0.452
	SW1.2.2	7	5.893	0.5		SWA.2.2	9.5	10.336	0.548
		ΣR =	12	_			ΣR =	19	-
	SW5.2.1	7	5.893	0.5		SWF.2.1	13	16.874	0.741
	SW5.2.2	7	5.893	0.5		SWF.2.2	7	5.893	0.259
		ΣR =	12	_			ΣR =	23	_

Total Base Shear V = 208.66 kips Load to each shear wall line $F_2 = 104.33$ kips

		2		
Wall	Shear		Wall	Shear
SW1.2.1	52.16		SW5.2.1	52.16
SW1.2.2	52.16		SW5.2.2	52.16
"1" Total:	104.33		"5" Total:	104.33
Wall	Shear		Wall	Shear
SWA.2.1	47.12		SWF.2.1	77.32
SWA.2.2	57.21		SWF.2.2	27.01
SWA.2.2 "A" Total:	57.21 104.33		SWF.2.2 "F" Total:	27.01 104.33

Out of Plane Loads to Upper Level Walls

12 ft. high x 6" thick walls spanning from podium slab to roof $Fp = 0.45 (150pcf \times 0.5ft) =$ 33.75 psf Assuming pin-pin wall connections (top & bottom) $v_{max} = Fp \times H/2 =$ 202.5 lbs/ft. $M_{max} = Fp \times H^2/8 =$ 607.5 ft-lbs unsupported length, I_{μ} = 144 inches radius of gyration, r = 0.3 x 6" = 1.8 inches $kl/r = 1.0*l_{u}/r =$ > 22, slenderness effects must be considered 80 Load combinations to consider: 0.9D+ 1.1E 1.05D + 1.28L + 1.4E See Enercalc analysis of slender wall

6" wall w/ #4 @ 12"o.c. ea. way is adequate to span vertically

Anchorage for out-of-plane loads:		
existing 7/8"dia. x 12" a.b. w/ 3" edge distance:		
Allowable shear, V = 4.15k - [(5.25-3)(4.15-2.075)/(5.25-2.63)] =	2.37	kips/bolt
(per 1985 UBC table 26-G for 3ksi concrete)		
Reaction at top of walls, R = 0.204 klf (ASD)		
for 7' long wall, number of A.B. required = R x 7/V = 1	bolt	
for 13'-10" long wall, number of A.B. required = R x 13.83/V =	2	bolts

See Enercalc Anaysis of Slender Wall

Existing Concrete Walls at the Upper Level are adequate for Out-Of-Plane Bending, Deflection and for Anchorage. DEFICIENCIES: None

Lower Level Seismic Loads:

Concrete floor slab. Concrete shear walls.

Height H = 12 ft.

Note: All wall thicknesses t = 12 in., except along Line 5, where t = 18 in. Note: Wall rigidities are of fixed-fixed walls: $R = t / [0.1(H/L)^3 + 0.3(H/L)]$

Wall	Length L	Rigidity	Relative R	 Wall	Length L	Rigidity	Relative R
SW1.1.1	48	156.735	0.680	SWA.1.1	97.5	323.367	1.000
SW1.1.2	24	73.846	0.320				
	ΣR =	231	_	SWF.1.1	97.5	323.367	1.000

Wall Line 5: Wall has new window & door openings due to 1986 modifications.

Header height $H_1 = 3.875$ ft. Pier height $H_2 = 5.75$ ft.

Sill height $H_3 = 2.375$ ft.

Note: Wall deflections are of fixed-fixed walls: $\Delta = [0.1(H/L)^3 + 0.3(H/L)] / t$

Wall	Length L	Rigidity	Relative R		Wall	Length L	Deflection	
SW5.1.1	9.33	86.416	0.238		Header	121	0.0005	-
SW5.1.2	5.67	44.061	0.121					
SW5.1.3	6.25	50.866	0.140					
SW5.1.4	6.25	50.866	0.140					
SW5.1.5	5.67	44.061	0.121		Wall	Length L	Rigidity	Relative R
SW5.1.6	9.33	86.416	0.238		Sill	51.92	1310.749	0.500
	ΣR =	362.686	-		ΣR = 2	2 * R =	2621.498	-
Δ_{Piers} =	1/ΣR =	0.0028			$\Delta_{\rm Sills}$ =	1/ΣR =	0.0004	
Δ_{Total} = Δ_{Hea}	ader + Δ_{Piers} +	- Δ_{Sills} =	0.0037	in.				
$R_{Total} = 1/\Delta$	_{Total} =	272.287						

Total Base Shear V =	530.0	kips from lov	wer level r	nass only				L
Depth D = 97.5 ft								
Length L = 121 ft	 							
Transverse (N-S) load V	V _{N-S} = V /	L =	4.38	kip/ft.				
Longitudinal (E-W) load	$W_{E-W} = V$	/ D =	5.44	kip/ft.				
Load to each wall line from	om upper	level F ₁ =	104.33	kips				
Longitudinal seismic dis	tribution, s	see Enercalc	Torsional	Analysis of Rig	gid Diaphr	agm Prog	ram, followir	ng pages.
Load to each shear wall	line:							
Line Shear T	otal Shear	- 						
1 406.15	510.48	kips						
5 153.58	257.91	kips						
A 282.88	387.21	kips						
F 202.00	307.21	kips						
Roof Diaphragm								
Diaphragm length L =	97	ft.		Entire length	L ₁ =	121	ft.	
Diaphragm depth D =	121	ft.		Entire depth I	D ₁ =	145	ft.	
Note: The seismic coef	ficients for	base shear	& the diap	hraam force, a	at the uppe	er level, ar	e equal to e	ach other.
Diaphragm force $F_{px} = V$	/ =	208.66	kips	- 0		, -		
Transverse Direction:								
Diaphragm shear $v = F_{px}$	* (D / D ₁)	* 1000 / L / 2	=	898 pl	f			
Existing diaphragm is 1/	2" CD-X p	lywood over	3x T&G d	ecking w/ 10d	@ 6" o.c.	at all edge	s, blocked.	
Allowable shear for plyw	/ood v _{ap} =	325 p	olf	(UBC Table N	No. 25-J-1)		
Allowable shear for deck	king v _{ad} =	100 p	olf	(UCBC value	s.)			
Allowable shear $v_a = v_{ap}$	+ v _{ad} =	425 g	olf	< V	=	898	plf	NG!
Overstress =	111.2%	>	5.0%	NG!			•	
Longitudinal Direction:								
Diaphragm shear v = F_{px}	* (L / L ₁) *	* 1000 / D / 2	=	691 pl	f			
Existing diaphragm is 1/	2" CD-X p	lywood over	3x T&G d	ecking w/ 10d	@ 6" o.c.	at all edge	s, blocked.	
Allowable shear v _a =	425	plf	<	v =	691	olf	NG!	
Overstress =	62.6%	>	5.0%	NG!				

Existing Roof Diaphragm Is Highly <u>Overstressed</u>. Therefore, Diaphragm Is <u>NOT</u> Adequate. **DEFICIENCIES:** Insufficient Amount Of Diaphragm Nailing -- Diaphragm Nail Spacing Is Too Large.

Chord & Collector Stresses

Existing chord/collector is 16B31 (W16x31) A36 steel w/ splice plate 1/4"x9"x12" on both sides & (3) 5/8" (A307 steel) at each end -- bolts are in double shear. (Note: Originally, there was only a single splice plate, but in the 1986 upgrades, an additional splice plate was added to the opposite side.) Bolts:

d _b =	0.625	in.		$d'_{b} = d_{b} + .$	0625" =	0.6875	in.		
<u>Beam:</u>									
t _w =	0.275	in.		A =	9.12	in ²			
F _y =	36	ksi		F _u =	58	ksi			
Plates:									
t _p =	0.25	in.		d _p =	9	in.			
F _y =	36	ksi		F _u =	58	ksi			
Allowable she	ear load o	on bolts = 6	.1 * 3 * 1.33	; =	24.3	kips			
Allowable ter	ision load	l on plates ((gross) = 0.6	60 * F _y * (2 ⁻	* t _p * d _p) * 1.	.33 =	129.3	kips	
Allowable ter	ision load	l on plates ((net) = 0.50	* F _u * {2 * t _p	,* [d _p - (3 *	d' _b)]} * 1.33	=	133.8	kips
Allowable ter	ision load	l on beam (gross) = 0.6	50 * F _v * A *	1.33 =	262.0	kips		
Allowable ter	sion load	l on beam (net) = 0.50	* F,, * (3	3 * t _w * d' _b)]	* 1.33 =	329.9	kips	
Min. allowabl	e load =	24.3	kips	<== Bolts	capacity q	overns.			
					1 50				
Existing 16B3	31 perime	eter beams	are anchore	ed to top of	concrete sh	ear walls w/	∕ 7/8"φ A.B.	's (A307 st	eel).
Allowable she	ear load o	on anchor b	olts = 4.15 '	* 1.33 =	5.52	kips	(UBC Tabl	le No. 26-G	S)
Chand Stree									
	S: E Same)								
Chord stress	<u>T=F</u> *	D ² /8/1/	D. =	27.2	kine				
	$d = 1_{px}$	2/3	kine	21.2	кіра т –	27.2	kine	NGI	
	iu –	24.3 11.5%	kips >	5 0%	I - NGI	21.2	кips	NG:	
010101000 -		11.070	-	0.070	NO				
Line 1 (Line	5 Same)								
Chord stress	$T = F_{px}$ *	L ² / 8 / D /	L ₁ =	16.8	kips				
Allowable loa	d =	24.3	kips	>	T =	16.8	kips	ОК	
Collector St	resses:								
Line A	. –								
Force to Line	$A \vdash_A =$	104.33	kips						
See Program	PL-02 -	Collector St	tress Analys	sis, following	g pages.				
Max. collecto	r load to	SVVA.2.1 =	26.9	kips					
Max collecto	r load E -	500A.Z.Z = -	41.4 /1/	kips kips					
	- Iuau I -	-	41.4	кіра					
Check splice	connecti	on:							
, Allowable loa	id =	24.3	kips	<	F =	41.4	kips	NG!	
Overstress =		70.1%	>	5.0%	NG!				
.									
Check wall a	nchorage			~	a sa a la sa	14 -			
Number of an	ichor bolt	s N at SWA	4.2.1 = 22.4	6 kino	anchor bo		26.0	kino	01/
Allowable loa	u = 5.52	= Ni • Ni at S\//	33.1 \ 2 2 -	kips o	> anchar ba	г= Ite	20.9	kips	UK
Allowable loa	d = 5.52	* N =	1.2.2 – 44 2	o kins		F=	41 4	kins	0ĸ
,			17.6		-	•			U IN

Line F								
Force to Line F F _F =	104.33	kips						
See Program PL-02 - Co	ollector St	ress Analys	sis, following	g pages.				
Max. collector load to SV	NF.2.1 =	26.9	kips					
Max. collector load to SV	NF.2.2 =	27.9	kips					
Max. collector load F =		27.9	kips					
Check splice connection	n:							
Allowable load =	24.3	kips	<	F =	27.9	kips	NG!	
Overstress =	14.6%	>	5.0%	NG!				
Check wall anchorage:								
Number of anchor bolts	N at SWF	.2.1 =	10	anchor bo	olts			
Allowable load = 5.52 * I	N =	55.2	kips	>	F =	26.9	kips	ΟΚ
Number of anchor bolts	N at SWF	.2.2 =	4	anchor bo	olts		·	
Allowable load = 5.52 * I	N =	22.1	kips	<	F =	27.9	kips	NG!
Overstress =	26.4%	>	5.0%	NG!				
Line 1 (Line 5 Same)								
Force to Line 1 $F_1 =$	104.33	kips						
See Program PL-02 - Co	ollector St	ress Analvs	sis. following	pages.				
Max. collector load F =		45.3	kips	919				
Check splice connection								
Allowable load =	. 24.3	kips	<	F =	45.3	kips	NG!	
Overstress =	86.0%	>	5.0%	NG!				
Check wall anchorage								
Number of anchor bolts	N =	7	anchor bol	lts				
Allowable load = $5.52 * 1$	N =	38.6	kips	<	F =	45.3	kips	NG!
Overstress =	17.2%	>	5.0%	NG!			I	

Existing 16B31 (W16x31) Perimeter Beam Splice Connection, for Collector and Chord forces, Is Highly <u>Overstressed</u>. Therefore, Beam Splice Connection Is <u>NOT</u> Adequate.

DEFICIENCIES: Insufficient Number Of Bolts At Each Beam End At Splice Connection.

Existing Anchorage of 16B31 Perimeter Beams To Top Of Concrete Shear Walls, for In-plane shear, Is <u>Overstressed</u>. Therefore, Beam Anchorage Is <u>NOT</u> Adequate.

<u>DEFICIENCIES</u>: Insufficient Number Of Anchor Bolts From Perimeter Beams To Top Of Most Concrete Shear Walls for In-Plane Shear. Walls With Insufficient Anchor Bolts Include All Walls Along Lines 1 & 5 and Wall Along Line F, Near Line 5 Corner.

Shear Walls

Upper Level: Wall SW1.2.1 (Walls SW1.2.2, SW5.2.1, & SW5.2.2 Similar) Wall height H = 12 ft. Wall length L = 7 ft. Wall thickness t = 6 in. Roof tributary width 1 L_{r1} = Roof tributary width 2 L_{r2} = 12 ft. 4 ft. Roof load $W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 =$ 5.63 kips at 3.5 ft. from left end of wall. Wall weight W_w = 150 * t * H * L / 12 / 1000 = ft. from left end of wall. 6.3 3.5 kips at Wall seismic weight $F_w = 0.210 * W_w =$ ft. from base of wall. 1.3 kips at 6 Applied lateral load F = 52.16 kips at 12 ft. from base of wall. See Program PC-02 - Concrete Shear Wall, following pages. Max. M_{μ} = 887.2 ft.-kips $\phi M_n =$ > 361.6 ft.-kips NG! Overstress = 145.4% > 5.0% NG! Check existing dowelling from wall base to foundation wall: V_u = 74.8 kips Existing #5 dowels @ 6" o.c.: φ= 0.85 d = 0.8 * L * 12 = s = in. 67.2 in. 6 in² $A_{\rm vf} =$ $f_v =$ 0.31 40 ksi f'_c = $b_w = t =$ 3.5 6 in. ksi $\phi V_s = \phi * (A_{vf} * f_v * d / s) =$ 118.1 kips $\phi V_c = \phi * [2 * (f_c)^{1/2} * b * d] =$ 40.6 kips $\phi V_c = \phi * [10 * (f_c)^{1/2} * b * d] =$ $\phi V_n = \phi V_s + \phi V_c =$ 158.6 < kips 202.8 kips $\phi V_n =$ $V_u =$ ΟΚ 158.6 > 74.8 kips kips

Note: Starting with the 1967 UBC, (vertical) boundary members & boundary ties were required for shear walls that were part of dual systems with frames (K = 0.80). However, in the 1985 UBC, the boundary member requirements were changed to include all shear walls in general.

Existing Concrete Shear Walls Along Lines 1 & 5 Are Highly <u>Overstressed</u> in In-Plane bending. Therefore, Walls Are <u>NOT</u> Adequate.
DEFICIENCIES : Boundary Members Required. Double Layer of Reinforcing Required.

Wall SWA.2.	<u>1</u>								L10
Wall height H	1 =	12	ft.						
Wall length L	_ =	8.5	ft.						
Wall thicknes	ss t =	6	in.						
Roof tributar	y width 1	L _{r1} =	12	ft.	Roof tribu	tary width 2	2 L _{r2} =	4	ft.
Roof load W	_r = [(49 *	L _{r1}) + (54 *	^r L _{r2})] * L / 10	= 000	6.83	kips at	4.25	ft. from le	ft end of wall.
Wall weight	N _w = 150	D*t*H*L	/ 12 / 1000 :	= 7.7	kips at	4.25	ft. from I	eft end of w	all.
Wall seismic	weight F	_w = 0.210	* W _w =	1.6	kips at	6	ft. from t	base of wall.	
Applied later	al load F	=	47.12	kips at	12	ft. from	base of wall		
See Progran	1 PC-02	- Concrete	Shear Wall,	following p	ages.	<i>c</i>			
Max. $M_u =$	805.1	ftkips	>	φM _n =	285.4	ftkips	NG!		
Overstress =	:	182.1%	>	5.0%	NG!				
Check existi	ng dowel	lling from w	all base to f	oundation w	vall:				
V _u =	74.8	kips							
Existing #5 c	lowels @) 6" o.c.:	φ =	0.85					
d = 0.8 * L *	12 =	81.6	in.			s =	6	in.	
A _{vf} =	0.31	in ²				f _y =	40	ksi	
f' _c =	3.5	ksi				b _w = t =	6	in.	
$\phi V_s = \phi * (A$	$v_f * f_y * d$	/ s) =	143.3	kips					
$\phi V_c = \phi * [2$	* (f ' _c) ^{1/2} *	b * d] =	49.2	kips					
$\phi V_n = \phi V_s +$	ϕV_c =	192.6	kips	<	$\phi V_c = \phi *$	$[10 * (f'_c)^{1/2}]$	* b * d] =	246.2	kips
ϕV_n =	192.6	kips	>	V _u =	74.8	kips	ОК		

Existing Concrete Shear Wall Along Line A Is Highly <u>Overstressed</u> in In-Plane bending. Therefore, Wall Is <u>NOT</u> Adequate.	
DEFICIENCIES: Boundary Members Required.	

Wall SWA.2.2		L11
Wall height H = 12 ft.		
Wall length L = 9.5 ft.		
Wall thickness t = 6 in.		
Roof tributary width 1 $L_{r1} = 12$ ft.	Roof tributar	Ty width $2L_{r2} = 4$ ft.
Roof load $W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 =$	7.64 k	tips at 4.75 ft. from left end of wall.
Wall weight $W_w = 150 * t * H * L / 12 / 1000 =$	3.6 kips at	4.75 ft. from left end of wall.
Wall seismic weight $F_w = 0.210 * W_w =$	1.8 kips at	6 ft. from base of wall.
Applied lateral load F = 57.21 kips See Program PC-02 - Concrete Shear Wall, follow	at 12 fi ing pages.	t. from base of wall.
Max. M_u = 976.2 ftkips > ϕM_n	= 406.2 ff	tkips NG!
Overstress = 140.3% > 5	.0% NG!	
Existing Concrete Shear Wall Along I	ine A Is Highly <u>Ov</u>	verstressed in In-Plane bending.
Therefore,	Wall Is <u>NOT</u> Adeq	uate.
DEFICIENCIES: Boundary Members	Required. Double	Layer of Reinforcing Required.
$\frac{\text{Wall SWF.2.1}}{\text{Wall beight H}} = 12 \text{ ft}$		
Wall SWF.2.1Wall height H =12ft.Wall length L =13		
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.		
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.		
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.Roof tributary width 1 L_{r1} =12ft.	Roof tributar	ry width 2 L _{r2} = 4 ft.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Roof tributar 10.45 k	ry width 2 L _{r2} = 4 ft. Kips at 6.5 ft. from left end of wall.
Wall SWF.2.1 Wall height H = 12 ft. Wall length L = 13 ft. Wall thickness t = 6 in. Roof tributary width 1 L_{r1} = 12 ft. Roof load W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 = 1 Wall weight W_w = 150 * t * H * L / 12 / 1000 = 1	Roof tributar 10.45 k 1.7 kips at	ry width 2 L _{r2} = 4 ft. kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall.
Wall SWF.2.1 Wall height H = 12 ft. Wall length L = 13 ft. Wall thickness t = 6 in. Roof tributary width 1 L_{r1} = 12 ft. Roof load W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 = 1 Wall weight W_w = 150 * t * H * L / 12 / 1000 = 1 Wall seismic weight F_w = 0.210 * W_w = 2	Roof tributar 10.45 k 1.7 kips at 2.5 kips at	ry width 2 L _{r2} = 4 ft. Kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall. 6 ft. from base of wall.
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.Roof tributary width 1 L_{r1} =12ft.Roof load W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 =1Wall weight W_w = 150 * t * H * L / 12 / 1000 =1Wall seismic weight F_w = 0.210 * W_w =2Applied lateral load F =77.32KipsSee Program PC-02 - Concrete Shear Wall, follow	Roof tributar 10.45 k 1.7 kips at 2.5 kips at at 12 fl ing pages.	ry width 2 L _{r2} = 4 ft. kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall. 6 ft. from base of wall. t. from base of wall.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Roof tributar 10.45 k 1.7 kips at 2.5 kips at at 12 ff ing pages. = 699.2 ff	ry width 2 L _{r2} = 4 ft. kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall. 6 ft. from base of wall. t. from base of wall. tkips NG!
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.Roof tributary width 1 L_{r1} =12ft.Roof load W_r = [(49 * L_{r1}) + (54 * L_{r2})] * L / 1000 =1Wall weight W_w = 150 * t * H * L / 12 / 1000 =1Wall seismic weight F_w = 0.210 * W_w =2Applied lateral load F =77.32KipsSee Program PC-02 - Concrete Shear Wall, followMax. M_u =1320.0ftkips> ϕM_n Overstress =88.8%See Program PC-02	Roof tributar 10.45 k 1.7 kips at 2.5 kips at at 12 ff ing pages. = 699.2 ff .0% NG!	ry width 2 L _{r2} = 4 ft. kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall. 6 ft. from base of wall. t. from base of wall. tkips NG!
Wall SWF.2.1Wall height H =12ft.Wall length L =13ft.Wall thickness t =6in.Roof tributary width 1 L _{r1} =12ft.Roof load W _r = [(49 * L _{r1}) + (54 * L _{r2})] * L / 1000 =1Wall weight W _w = 150 * t * H * L / 12 / 1000 =1Wall seismic weight F _w = 0.210 * W _w =2Applied lateral load F =77.32KipsSee Program PC-02 - Concrete Shear Wall, followMax. M _u =1320.0ftkips> ϕ M _n Overstress =88.8%StatementExisting Concrete Shear Wall Along I	Roof tributar 10.45 k 1.7 kips at 2.5 kips at at 12 ff ing pages. = 699.2 ff .0% NG!	ry width 2 L _{r2} = 4 ft. kips at 6.5 ft. from left end of wall. 6.5 ft. from left end of wall. 6 ft. from base of wall. t. from base of wall. tkips NG!

DEFICIENCIES: Double Layer of Reinforcing Required.

Wall SWF.2.2								L12
Wall height H =	12	ft.						
Wall length L =	7	ft.						
Wall thickness t =	6	in.						
Roof tributary width 1	l L _{r1} =	12	ft.	Roof tribu	itary width	2 L _{r2} =	4 ft	
Roof load $W_r = [(49 *$	^r L _{r1}) + (54 * L	. _{r2})] * L / 10	= 000	5.63	kips at	3.5	ft. from left e	nd of wall.
Wall weight $W_w = 15$	0 * t * H * L /	12 / 1000	= 6.3	kips at	3.5	ft. from le	eft end of wall.	
Wall seismic weight I	= _w = 0.210 * \	N _w =	1.3	kips at	6	ft. from b	ase of wall.	
Applied lateral load F See Program PC-02	= - Concrete Sl	27.01 hear Wall,	kips at following part	12 ages.	ft. from	base of wall.		
Max. M _u = 464.7	ftkips	>	φM _n =	232.4	ftkips	NG!		
Overstress =	100.0%	>	5.0%	NG!				
Existing Concrete Shear Wall Along Line F Is Highly <u>Overstressed</u> in In-Plane bending. Therefore, Wall Is <u>NOT</u> Adequate.								
	D	EFICIENC	IES: Boun	dary Memb	pers Requi	red.		

Lower Level:							L13
Wall SW1.5.1 (Walls a	llong gridlin	<u>e 5 similar)</u>					
Wall height H =	5.75	ft.					
Wall length L =	5.67	ft.					
Wall thickness t =	18	in.					
Roof tributary width 1	L _{r1} =		ft.	Roof tribu	tary width 2	2 L _{r2} =	ft.
Roof load $W_r = [(49 * I)]$	_{-r1}) + (54 * I	L _{r2})] * L / 10	= 00	0.00	kips at	2.835	ft. from left end of wall.
Wall weight W _w = 150	* t * H * L /	12 / 1000 =	7.3	kips at	2.835	ft. from l	eft end of wall.
Wall seismic weight F	_w = 0.210 *	W _w =	1.5	kips at	2.875	ft. from b	base of wall.
Applied lateral load F See Program PC-02 -	= Concrete S	27.40 Shear Wall, 1	kips at following pa	5.75 ages.	ft. from b	base of wall	
Max. M _u = 236.7	ftkips	>	φM _n =	115.3	ftkips	NG!	
Overstress =	105.3%	>	5.0%	NG!			

Existing Concrete Shear Walls Along Line 5 Are Adequate in In-Plane Shear, Bending and for Compressive Forces Due to Overturning. DEFICIENCIES: None

Wall SW1.1.2 (Walls a	along gridlir	ne 1 similar)					
Wall height H =	13	ft.					
Wall length L =	25	ft.					
Wall thickness t =	12	in.					
Roof tributary width 1	L _{r1} =		ft.	Roof tribu	tary width	2 L _{r2} =	ft.
Roof load $W_r = [(49 *$	L _{r1}) + (54 *	L _{r2})] * L / 10	= 00	0.00	kips at	12.5	ft. from left end of wall.
Wall weight W _w = 150	*t*H*L/	/ 12 / 1000 =	48.8	kips at	12.5	ft. from I	eft end of wall.
Wall seismic weight F	_w = 0.210 *	W _w =	10.2	kips at	6.5	ft. from I	base of wall.
Applied lateral load F	=	119.50	kips at	13	ft. from	base of wall	
See Program PC-02 -	Concrete S	Shear Wall, f	ollowing pa	ages.			
Max. $M_u = 2268.0$	ftkips	<	ϕM_n =	2293.0	ftkips	OK	
Overstress =	-1.1%	<	5.0%	ОК			
Existing Cond	rete Shear	r Walls Alor	ng Line 1 A	Are Adequa	te in In-Pla	ane Shear,	Bending and for

Compressive Forces Due to Overturning. DEFICIENCIES: Double layer or reinforcing required

Applied Loads	5:			
Dead Load =		109	psf GIRDERS	
Dead Load =		83	psf JOISTS	
Live Load =		50	psf for office spaces	
		100	pst for assembly, corridor spaces	
Live Load red	uction L	= L _o (0.25+1	5/sqrt(K _{LL} A _T))	
K _{LL} =	2	for interior	beams	
A _T =	768	sq. ft. for 32 ft. span girder > 400 sf, reducible		
	576	sq. ft. for 24	4 ft. span girder > 400 sf, reducible	
no LL reductio	on for jois	sts		
LL _{office} =	41.5	psf at 24 ft.	. span (> 0.5LL, OK)	
LL _{assembly} =	60.0	psf at 32 ft.	span (no reduction for public assembly)	
LL _{corridor} =	63.3	psf at 32 ft.	. span (> 0.5LL, OK)	
P _{DL} Beam B4	=	2600	lbs (framing into girder on gridline E)	
fy main rebar	=	40	ksi	
fy ties =		40	ksi	
slab effective overhanging fl	width us lange sh	ed for girde all be	r flange:	
smallest of:		8 x slab thi clear span/	ckness = 24 in. < governs 2 = 136.02 in.	
total width is 2	2 x 24in +	+ 16in =	64 in.	
ເບເ	ai shali r	iot exceed ($\frac{1}{100} = \frac{1}{100} = \frac{1}$	
slab effective	width us lange sh	ed for joist f all be	lange:	
smallest of:		8 x slab thi clear span/	ckness = 24 in. < governs 2 = 136.02 in.	
total width is 2 tot	2 x 24in + al shall r	12in = not exceed j	60 in. oist span/4 = 68.01 in.	
Floor Live Loa	d reduct	ion:		
A _{trib} =	768	sf	A _{trib} = 576 sf	
can be reduce R =	ed at a ra 49%	te of 0.08 p	ercent of area supported by the member	
R _{max} =	40%	<governs< td=""><td>s, reduced $\text{LL}_{\text{corridor}}$ can be 40psf, $\text{LL}_{\text{office}}$ can be 20psf;</td></governs<>	s, reduced $\text{LL}_{\text{corridor}}$ can be 40psf, $\text{LL}_{\text{office}}$ can be 20psf;	
R _{max} =	48%		50 psf used in all spaces in original analysis	

See Enercalc Analyses for Joists & Girders
Original Design; Shear in Girders

Working Stress Design 1964 UBC:

V _{max} =	60700	lbs (from o	riginal shea	r diagrams)
v _{allow} =	90	psi for 3ksi	concrete w	/ stirrups
V' = V _{max} -	v _{allow} (bjd) =	19120	lbs shear o	arried by web reinforcement
$s_{req'd} = A_v f_v$	jd/V' =	13.3	in.	Stirrups provided at 12" spacing

Current Design; Shear in Girders

Strength De	esign 2010) CBC:					
Vc =	62474	lbs	f'c =	3500	psi		
fVc =	46855	lbs	for (2) #3 ti	e legs, s =	0.22(40000))33"/Vs =	290400 /Vs
fVc/2 =	23428	lbs					
			spcg for	spcg for	spcg for		
Vu	Vs	<fvc 2?<="" td=""><td>A_{vmin1}</td><td>A_{vmin2}</td><td>Av</td><td>spacing</td><td></td></fvc>	A _{vmin1}	A _{vmin2}	Av	spacing	
80000	44193	no	12.4	11	6	6	
70000	30860	no	12.4	11	9	9	Per Enercalc Analysis:
65000	24193	no	12.4	11	12	11	Vu max = 78730 lbs
60000	17526	no	12.4	11	16	11	ϕ Vn for ties @ 12" = 65000 lbs
50000	4193	no	12.4	11	69	11	max overstress = 1.21
40000	0	no	12.4	11	not req'd	11	
30000	0	no	12.4	11	not req'd	11	
Deflection I <u>1964 UBC</u> L/360 for LI L/240 for D	imitations <u>& 2010 (</u> - L + LL	<u>CBC</u>					
_						50 psf LL	
32' span D	limit =	1.07	in. (LL only	7)			
		1.60	in. (DL + Ll	_)	Dmax =	0.154	in.
24' span D	limit =	0.80	in. (LL only	')			
		1.20	in. (DL + Ll	_)	Dmax =	0.039	in.
Long term of For 32' spa	deflections n girder	due to cre	ер				
$I_{\rm D} = Z/(1+50)$) =	1.41	in.				
Total long t	erm deflec	tion = I_D +	Dmax =	1.57	in. which is for Total D	s still within eflection	n code limits

Existing Concrete Girder Along Line C Is Adequate in Flexure, But is Overstressed in Shear at Two Columns (Gridlines 2 & 3). <u>DEFICIENCIES</u>: Shear Reinforcement Spacing is Too Large at Some Locations Description :

Concrete Slender Wall

Existing 6" wall

Project Notes :

Printed: 5 OCT 2011 12:38DM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ecb
ENERCALC, INC. 1983-2011, Build:6.11.9.30, Ver:6.11.8.1
Licensee : AHEARN & KNOX, INC

General Information		(Calculati	ions per AC	l 318-08 Sec 14.8, IBC	2009, CBC	2010, ASCE 7-0
	3.50 ksi Wall 40.0 ksi Reba 372.17 ksi Reba 1.0 Lowe 295.80 psi B 0.60 B 0.060 144.0 pcf 12.0 in Intervention	Thickness ar at wall center ar "d" distance er Level Rebar Bar Size Bar Spacing	#	6.0 in 3.0 in 4 12.0 in	Temp Diff across thickne Min Allow Out-of-Plane I Minimum Vertical Steel Using Stiffness Reductic	ess = Defl Ratio = % = n Factor per	deg F L / 150.0 0.0020 ACI R.10.12.3
One-Story Wall Dimensions							
A Clear Height = B Parapet height = Wall Support Condition Top & Botto	12.0 ft ft om Pinned	B 			Roof Attachment Floor Attachment		
Vertical Loads							
Vertical Uniform Loads (Applied per Ledger Load Eccentricity Concentric Load	er foot of Strip Width) in	<u>DL : Dead Lo</u> 0.8	<u>ad</u> 380	<u>Lr : Root Live</u> 0.2	Load <u>Lf : Floor Live</u> 2560	<u>.oad S</u>	<u>s : Snow Load</u> k/ft k/ft
Full area WIND load	15.0 psf	Wall Weight Sei	smic Load	Input Method :	Direct entry c	f Lateral W	/all Weight
Fp 1.0 =	34.0 psf	Seismic Wall La	teral Load		34.	0 psf	-

DESIGN SUMMARY

Results reported for "Strip Width" of 12.0 in

	Governing Load Combination	Governing Load Combination Actual Values		Allowable Values		
PASS	Moment Capacity Check +1.050D+1.280Lr+1.40E	Maximum Bending Max Mu	Stress Ratio = (0.8592 k-ft	0.420 Phi * Mn	2.046 k-ft	
PASS	Service Deflection Check D + L + S + E/1.4	Min. Defl. Ratio Max. Deflection	9,242.33 0.01558 in	Max Allow Ratio Max. Allow. Defl.	150.0 0.960 in	
PASS	Axial Load Check +1.40D at 5.20 to 5.60	Max Pu / Ag	26.631 psi	0.06 * fc	210.0 psi	
PASS	Reinforcing Limit Check +1.40D	Controlling As/bd	0.005556	As/bd = 0.50 rho bal	0.02598	
FAIL	Minimum Moment Check	Mcracking	1.775 k-ft	Minimum Phi Mn	1.733 k-ft	
	+1.40D	Maximum Reactions	Maximum Reactions for Load Combination			
		Top Horizontal	E Only		0.2040 k	
		Base Horizonta	al E Only		0.2040 k	
		Vertical Reaction	on D+L+Lr		2.0 k	

Title : Cupertino City Hall Dsgnr: Project Desc.:

Printed: 5 OCT 2011, 12:38PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.30, Ver:6.11.8.1

Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Slender Wall

Lic. # : KW-06003381

Description : Existing 6" wall

Design Maximum Combinations - Moments

Axial Load			Moment Values						0.6 *	
Load Combination	Pu k	0.06*f'c*b*t k	Mcr k-ft	Mu k-ft	Phi	Phi Mn k-ft	As in^2	As Eff in^2	As Ratio	rho bal
+1.40D at 5.20 to 5.60	1.917	15.120	1.77	0.00	0.88	2.08	0.200	0.248	0.0056	0.0260
+1.050D+1.280Lr+1.40E at 5.60 to 6.00	1.736	15.120	1.77	0.86	0.88	2.05	0.200	0.243	0.0056	0.0260
+0.90D+1.10E at 5.60 to 6.00	1.207	15.120	1.77	0.67	0.89	1.96	0.200	0.230	0.0056	0.0260

Design Maximum Combinations - Deflections

	Axial Load	Mom	ent Values		Stiffness		Deflec	ctions
Load Combination	Pu	Mcr	Mactual	l gross	I cracked	I effective	Deflection	Defl. Ratio
	k	k-ft	k-ft	in^4	in^4	in^4	in	
D + L + Lr at 5.60 to 6.00	1.597	1.77	0.00	216.00	13.02	216.000	0.000	0.0
D + L + W at 5.60 to 6.00	1.341	1.77	0.27	216.00	12.73	216.000	0.010	14,963.8
D + L + W + S/2 at 5.60 to 6.00	1.341	1.77	0.27	216.00	12.73	216.000	0.010	14,963.8
D + L + S + W/2 at 5.60 to 6.00	1.341	1.77	0.14	216.00	12.73	216.000	0.005	29,927.6
D + L + S + E/1.4 at 5.60 to 6.00	1.341	1.77	0.44	216.00	12.73	216.000	0.016	9,242.3
D + 0.5(L+Lr) + 0.7W at 5.60 to 6.00	1.469	1.77	0.19	216.00	12.88	216.000	0.007	21,368.9
D + 0.5(L+Lr) + 0.7E at 5.60 to 6.00	1.469	1.77	0.43	216.00	12.88	216.000	0.015	9,427.5

Reactions - Vertical & Horizontal

Load Combination	Base Horizontal	Top Horizontal	Vertical @ Wall Base
D Only	0.0 k	0.00 k	1.744 k
S Only	0.0 k	0.00 k	0.000 k
W Only	0.1 k	0.09 k	0.000 k
E Only	0.2 k	0.20 k	0.000 k
D + L + Lr	0.0 k	0.00 k	2.000 k
D + L + S	0.0 k	0.00 k	1.744 k
D + L + W + S/2	0.1 k	0.09 k	1.744 k
D + L + S + W/2	0.0 k	0.05 k	1.744 k
D + L + S + E/1.4	0.1 k	0.15 k	1.744 k

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line 1 & 5

Input Data:							
Total Lateral	Load:	104330	lbs.				
Overall Collect	ctor Length:	121	ft.				
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*		
1	7	1	6				
2	7	113	7				
3			8				
4			9				
5			10				
Begin location is distance from left end of overall collector length to left end of shear wall.							

Collector Load =	862.2	plf
Shear Wall Load =	7452.1	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No. E	Begin (lbs.)	End (lbs.)
1	862	-45267	6	0	0
2	45267	-862	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line A

Input Data: Total Lateral Overall Collec	Load: ctor Length:	104330 97	lbs. ft.						
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*				
1	8.5	25	6						
2	9.5	49	7						
3			8						
4			9						
5			10						
* Begin location i	* Begin location is distance from left end of overall collector length to left end of shear wall.								

Collector Load =	1075.6	plf
Shear Wall Load =	5796.1	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No.	Begin (lbs.)	End (lbs.)
1	26889	-13235	6	0	0
2	3436	-41409	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line F

Input Data: Total Lateral Overall Collec	Load: ctor Length:	104330 97	lbs. ft.		
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*
1	13	25	6		
2	7	89	7		
3			8		
4			9		
5			10		
* Begin location i	s distance from le	eft end of over	all collector length to left	end of shear w	all.

Collector Load =	1075.6	plf
Shear Wall Load =	5216.5	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No.	Begin (lbs.)	End (lbs.)
1	26889	-26943	6	0	0
2	27911	-1076	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PC-03 CONCRETE SHEAR WALL Designation: SW1.2.1

1998 CBC (1985 UBC Sim.)

_

7 ft.		Vertical Lo	oads, kips:	(Special = ass	embly, > 100 ps	of or garage)	
6 in.		Distance me	asured from le	eft end of wall,	ft.		
12 ft.		Load No.	Dead, kips	Live, kips	Distance	Special (Y/	N)
		1	5.63		3.5		
4 (3-9))	2	6.3		3.5		
12 in.		3					
4 (3-9))	4					
12 in.		5					
S S/D							
			Lateral Loa	ads			
<mark>8</mark> (3-10	0)		Load No.	Force, kips	Height, ft.		
2			1	52.16	12		
<mark>8</mark> (3-10	0)		2	1.3	6		
2			3				
4 in.			4				
(3-6)) if req	uired.	5				
			6				
3.5 ksi 40 ksi		Note: Pro	gram does	not calculat	e wall self w	eight!	
Reinforcing Ratic al Reinforcing Ra foring Spacing: einforing Spacing cing Check: sing Check: heck:	o: atio: g:	0.0025 0.0025 18 18 Double Re Hooked S OK	Actual: Actual: Actual: Actual: einforcing C hear Reinfo	0.0028 0.0028 12 12 Curtain Req orcing IS Re	OK OK OK OK uired equired		
	φ=	0.85					
kips	$\phi V_n =$	107.6	kips	OK		DCR =	0.70
	+ -	0 00					
ft king	-ψ - Μ	264 1	ft king	Overetrees	od		2 4 4
п-кірб с	φινι _n –	304.1	n-kips	Oversitess	eu!	DCR -	2.44
ft-kips o	φM _n =	364.1	ft-kips	Overstress	ed!	DCR =	2.44
<u>x:</u> puired: YES mber Length = mber Thickness = mber Steel = = of Hoop Ties Shall Shall Be Spaced s Shall Be Confir plices Shall Be S	= II Not E 1 12 in. hed By Spaced	12.6 9.0 0.6 1.6 0.0 Exceed 3 . o.c. Maxi Cross Tie I At 4 in. o	in. sq.in. sq.in. in. mum o Or Hoop (c. Maximun	Minimum N Supplied N Corner m	Number Of B lumber Of Ba	ars = 4 ars = 2	
	7ft.6in.12ft.12in.4 $(3-9)$ 12in.4 $(3-9)$ 12in.SS/D8 $(3-1)$ 2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.(3-6)3.5ksi40ksiReinforcing Ratiocing Check:cing Check:cing Check:cing Check:cing Check:cing Check:check:kipsft-kipsft-kips (2) wiber Length =mber Steel =nber Steel ==Of Hoop Ties Shall Be SpacedShall Be SpacedSplices Shall Be S	7ft.6in.12ft.4 $(3-9)$ 12in.4 $(3-9)$ 12in.SS/D8 $(3-10)$ 2in.3.5ksi40isi3.5ksi40ksiReinforcing Ratio:tal Reinforcing Ratio:foring Spacing:einforing Spacing:einforing Spacing:einforing Spacing:cing Check:check:theck: $\phi =$ kips $\phi V_n =$ $\phi =$ ft-kips $\phi M_n =$ </td <td>7ft.Vertical Lo6in.Distance me12ft.Load No.4$(3-9)$212in.34$(3-9)$412in.5SS/D8$(3-10)$283.5ksi40ksiNote: ProgReinforcing Ratio:0.0025a Reinforcing Ratio:0.0025foring Spacing:18einforing Spacing:18cing Check:Double Reisecing Check:OK$\phi = 0.85$kips$\phi V_n = 107.6$$\phi = 0.88$ft-kips$\phi M_n = 364.1$ft-kips$\phi M_n = 364.1$f</td> <td>7ft.Vertical Loads, kips: Distance measured from la Load No. Dead, kips:12ft.Load No. Dead, kips:15.634(3-9)434(3-9)434(3-9)4312in.55/D8(3-10)218(3-10)234in.3.5ksi40ksi10.66) if required.3.5ksi40ksi80.00253.5ksi40ksi80.002518Actual: cing Check:190.002518Actual: cing Check:190.002510107.610107.611107.612107.613401410.615107.616107.617107.618107.619107.61010.61010.61010.61110.61210.01410.61510.11610.11710.61810.11910.61910.61910.61010.61010.61010.61010.610<t< td=""><td>7ft.Vertical Loads, kips: (Special = ass6in.Distance measured from left end of wall,12ft.Load No.Dead, kipsLive, kips15.6315.6314(3-9)26.3112in.51526.31515151526.31515151526.31518(3-10)21.33215154in.413.5ksiNote: Program does not calculat3.5ksiNote: Program does not calculatal Reinforcing Ratio:0.0025Actual:0.0028foring Spacing:18Actual:12cing Check:Double Reinforcing Curtain Reqbing Check:Double Reinforcing Curtain Reqcing Check:Double Reinforcing Curtain Reqbing Check:OK$\phi = 0.85$kips$\phi V_n = 107.6$kips$\phi M_n = 364.1$ft-kips$\phi M_n = 364.1$ft-kips</td></t<><td>7ft.Vertical Loads, kips: (Special = assembly, > 100 pc6in.Distance measured from left end of wall, ft.12ft.Load No.Dead, kips4(3-9)15.633.512in.314(3-9)414(3-9)4151518(3-10)21.32in.518(3-10)21.34in.413.5ksiSince Program does not calculate wall self w4in.613.5ksiNote: Program does not calculate wall self w80.0025Actual:0.002840ksiNote: Program does not calculate wall self w8condent self self self self self self self self</td><td>7ft.Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft.12115.633.54(3-9)15.633.543.926.33.543114(3-9)26.33.5412in.31512in.152.16128(3-10)Lateral Loads1152.161221.3611121.361121.361121.36121.36121.363.5ksi100 psc or garage)41121.3131141151121.363314121.3413141415141415141514151415141611010.022511121213131414</td></td>	7ft.Vertical Lo6in.Distance me12ft.Load No.4 $(3-9)$ 212in.34 $(3-9)$ 412in.5SS/D8 $(3-10)$ 283.5ksi40ksiNote: ProgReinforcing Ratio:0.0025a Reinforcing Ratio:0.0025foring Spacing:18einforing Spacing:18cing Check:Double Reisecing Check:OK $\phi = 0.85$ kips $\phi V_n = 107.6$ $\phi = 0.88$ ft-kips $\phi M_n = 364.1$ f	7ft.Vertical Loads, kips: Distance measured from la Load No. Dead, kips:12ft.Load No. Dead, kips:15.634(3-9)434(3-9)434(3-9)4312in.55/D8(3-10)218(3-10)234in.3.5ksi40ksi10.66) if required.3.5ksi40ksi80.00253.5ksi40ksi80.002518Actual: cing Check:190.002518Actual: cing Check:190.002510107.610107.611107.612107.613401410.615107.616107.617107.618107.619107.61010.61010.61010.61110.61210.01410.61510.11610.11710.61810.11910.61910.61910.61010.61010.61010.61010.610 <t< td=""><td>7ft.Vertical Loads, kips: (Special = ass6in.Distance measured from left end of wall,12ft.Load No.Dead, kipsLive, kips15.6315.6314(3-9)26.3112in.51526.31515151526.31515151526.31518(3-10)21.33215154in.413.5ksiNote: Program does not calculat3.5ksiNote: Program does not calculatal Reinforcing Ratio:0.0025Actual:0.0028foring Spacing:18Actual:12cing Check:Double Reinforcing Curtain Reqbing Check:Double Reinforcing Curtain Reqcing Check:Double Reinforcing Curtain Reqbing Check:OK$\phi = 0.85$kips$\phi V_n = 107.6$kips$\phi M_n = 364.1$ft-kips$\phi M_n = 364.1$ft-kips</td></t<> <td>7ft.Vertical Loads, kips: (Special = assembly, > 100 pc6in.Distance measured from left end of wall, ft.12ft.Load No.Dead, kips4(3-9)15.633.512in.314(3-9)414(3-9)4151518(3-10)21.32in.518(3-10)21.34in.413.5ksiSince Program does not calculate wall self w4in.613.5ksiNote: Program does not calculate wall self w80.0025Actual:0.002840ksiNote: Program does not calculate wall self w8condent self self self self self self self self</td> <td>7ft.Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft.12115.633.54(3-9)15.633.543.926.33.543114(3-9)26.33.5412in.31512in.152.16128(3-10)Lateral Loads1152.161221.3611121.361121.361121.36121.36121.363.5ksi100 psc or garage)41121.3131141151121.363314121.3413141415141415141514151415141611010.022511121213131414</td>	7ft.Vertical Loads, kips: (Special = ass6in.Distance measured from left end of wall,12ft.Load No.Dead, kipsLive, kips15.6315.6314(3-9)26.3112in.51526.31515151526.31515151526.31518(3-10)21.33215154in.413.5ksiNote: Program does not calculat3.5ksiNote: Program does not calculatal Reinforcing Ratio:0.0025Actual:0.0028foring Spacing:18Actual:12cing Check:Double Reinforcing Curtain Reqbing Check:Double Reinforcing Curtain Reqcing Check:Double Reinforcing Curtain Reqbing Check:OK $\phi = 0.85$ kips $\phi V_n = 107.6$ kips $\phi M_n = 364.1$ ft-kips	7ft.Vertical Loads, kips: (Special = assembly, > 100 pc6in.Distance measured from left end of wall, ft.12ft.Load No.Dead, kips4(3-9)15.633.512in.314(3-9)414(3-9)4151518(3-10)21.32in.518(3-10)21.34in.413.5ksiSince Program does not calculate wall self w4in.613.5ksiNote: Program does not calculate wall self w80.0025Actual:0.002840ksiNote: Program does not calculate wall self w8condent self self self self self self self self	7ft.Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft.12115.633.54(3-9)15.633.543.926.33.543114(3-9)26.33.5412in.31512in.152.16128(3-10)Lateral Loads1152.161221.3611121.361121.361121.36121.36121.363.5ksi100 psc or garage)41121.3131141151121.363314121.3413141415141415141514151415141611010.022511121213131414

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.1

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butui			
Wall Length	8.5	ft.	Vertic
Wall Thickness	6	in.	Distand
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		-	
Left End Bar Size	9	(3-10)	
Number of Bars	1		
Right End Bar Size	9	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
		-	

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	6.83		4.25	
2	7.7		4.25	
3				
4				
5				

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	47.12	12
2	1.6	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wal	II Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wal	ll Horizon	tal Reinforci	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Ver	rtical Reir	nforing Space	ing:	18	Actual:	12	OK			
Maximum Ho	rizontal R	einforing Sp	bacing:	18	Actual:	12	OK			
Double Curtai	in Reinfo	rcing Check	:	Single Re	einforcing C	urtain Allov	wed			
Hooked Shea	r Reinfor	cing Check:	I	Hooked S	Shear Reinf	orcing IS R	Required			
Maximum Axi	al Load C	Check:	(OK						
Shear Check:			φ =	0.85						
V _u =	68.2	kips	φV _n =	120.1	kips	OK		DCR =	=	0.57
Bending Check	<u>:</u>		φ =	0.88						
M _u left =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
M _u right =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
Boundary Mem	ber Chec	<u>k:</u>								
Boundary Me	mber Red	quired:	YES							
Minimum Bou	Indary Me	ember Lengt	th =	15.3	in.					
Minimum Bou	Indary Me	ember Thick	ness =	9.0	in.					
Minimum Bou	Indary Me	ember Steel	=	0.7	sq.in.	Minimum	Number	Of Bars =	4	
Actual Bour	ndary Me	mber Steel =	=	1.0	sq.in.	Supplied	Number	Of Bars =	1	
Maximum Tie	Spacing	=		0.0	in.					
Length/Wid	th Ratio (Of Hoop Ties	s Shall Not E	xceed 3						
Cross Ties	Or Hoops	Shall Be S	paced 12 in.	o.c. Max	imum					
Alternate Ve	ertical Ba	rs Shall Be	Confined By	Cross Ti	e Or Hoop (Corner				
Ties At Vert	tical Bar S	Splices Shal	I Be Spaced	At 4 in. c	o.c. Maximu	m				
Horizontal Wa	all Reinfo	rcing Shall E	Be Hooked A	t Bounda	iry Edge					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.2

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butur	-	-	
Wall Length	9.5	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
			1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
Left End Bar Size	10	(3-10)	
Number of Bars	1		
Right End Bar Size	10	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)			
1	7.64		4.75					
2	8.6		4.75					
3								
4								
5								

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	57.21	12
2	1.8	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wall	Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wall	Horizon	tal Reinforcir	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Vertical Reinforing Spacing:			18	Actual:	12	OK				
Maximum Hor	izontal R	einforing Spa	acing:	18	Actual:	12	OK			
Double Curtai	n Reinfoi	cing Check:		Double R	Reinforcing (Curtain Rec	quired			
Hooked Shear	Reinfor	cing Check:		Hooked S	Shear Reinf	orcing IS R	lequired			
Maximum Axia	al Load C	neck:		OK						
Shear Check:			φ =	0.85						
V _u =	82.6	kips	$\phi V_n =$	134.2	kips	OK		DCR =	=	0.62
Bending Check:			φ =	0.88						
M _u left =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	-	2.40
M _u right =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	=	2.40
Boundary Memb	per Chec	<u>k:</u>								
Boundary Mer	nber Red	quired:	YES							
Minimum Bou	ndary Me	ember Length	ן =	17.1	in.					
Minimum Bou	ndary Me	ember Thickr	ness =	9.0	in.					
Minimum Bou	ndary Me	ember Steel =	=	0.8	sq.in.	Minimum	Number	Of Bars =	4	
Actual Boun	dary Mei	mber Steel =		1.3	sq.in.	Supplied I	Number (Of Bars =	1	
Maximum Lie	Spacing	=		0.0	in.					
Length/Widt	n Ratio (DT HOOP TIES	Shall Not E	xceed 3	•					
	Jr Hoops	s Shall Be Sp	aced 12 In.	O.C. Max	imum • Or Lleer (
Alternate ve	entical Ba	rs Snall Be C	De Cressed		e Or Hoop (Jorner				
	ICAI Bar S	Splices Shall	Be Spaced	AL4 IN. C	D.C. IVIAXIMU	[[]				
	ii Reinto	icing Shall B	е поокеа А	r Bonnga	iiy Euge					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.1

Input Data:

mpul Dala.	-	_	
Wall Length	13	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		_	
Left End Bar Size	8	(3-10)	
Number of Bars	2		
Right End Bar Size	8	(3-10)	
Number of Bars	2		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
Concrete Strength, f'c	3.5	ksi	
Reinforcing Yield, Fy	40	ksi	Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	10.45		6.5	
2	11.7		6.5	
3				
4				
5				

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	77.32	12
2	2.5	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall	Minimum Wall Vertical Reinforcing Ratio:			0.0025	Actual:	0.0028	OK		
Minimum Wall Horizontal Reinforcing Ratio:			0.0025	Actual:	0.0028	OK			
Maximum Vertical Reinforing Spacing:			18	Actual:	12	OK			
Maximum Horizontal Reinforing Spacing:			18	Actual:	12	OK			
Double Curtain Reinforcing Check:			Double R	Reinforcing (Curtain Red	quired			
Hooked Shear	r Reinford	ing Check:		Hooked S	Shear Reinf	orcing IS F	Required		
Maximum Axia	al Load C	heck:		OK					
Shear Check:			φ=	0.85					
V _u =	111.7	kips	φV _n =	183.7	kips	OK		DCR =	0.61
Bending Check:			φ=	0.88					
M _u left =	1320.0	ft-kips	$\phi M_n =$	699.2	ft-kips	Overstres	sed!	DCR =	1.89
M _u right =	1320.0	ft-kips	ϕM_n =	699.2	ft-kips	Overstres	sed!	DCR =	1.89

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.1

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butui			
Wall Length	8.5	ft.	Vertic
Wall Thickness	6	in.	Distand
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		-	
Left End Bar Size	9	(3-10)	
Number of Bars	1		
Right End Bar Size	9	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
		-	

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	6.83		4.25	
2	7.7		4.25	
3				
4				
5				

Lateral Loads Load No. Force, kips Height, ft.					
1	47.12	12			
2	1.6	6			
3					
4					
5					
6					

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wal	II Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wal	ll Horizon	tal Reinforci	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Ver	rtical Reir	nforing Space	ing:	18	Actual:	12	OK			
Maximum Ho	rizontal R	einforing Sp	bacing:	18	Actual:	12	OK			
Double Curtai	in Reinfo	rcing Check	:	Single Re	einforcing C	urtain Allov	wed			
Hooked Shea	r Reinfor	cing Check:	I	Hooked S	Shear Reinf	orcing IS R	Required			
Maximum Axi	al Load C	Check:	(OK						
Shear Check:			φ =	0.85						
V _u =	68.2	kips	φV _n =	120.1	kips	OK		DCR =	=	0.57
Bending Check	<u>:</u>		φ =	0.88						
M _u left =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
M _u right =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
Boundary Mem	ber Chec	<u>k:</u>								
Boundary Me	mber Red	quired:	YES							
Minimum Bou	Indary Me	ember Lengt	th =	15.3	in.					
Minimum Bou	Indary Me	ember Thick	ness =	9.0	in.					
Minimum Bou	Indary Me	ember Steel	=	0.7	sq.in.	Minimum	Number	Of Bars =	4	
Actual Bour	ndary Me	mber Steel =	=	1.0	sq.in.	Supplied	Number	Of Bars =	1	
Maximum Tie	Spacing	=		0.0	in.					
Length/Wid	th Ratio (Of Hoop Ties	s Shall Not E	xceed 3						
Cross Ties	Or Hoops	Shall Be S	paced 12 in.	o.c. Max	imum					
Alternate Ve	ertical Ba	rs Shall Be	Confined By	Cross Ti	e Or Hoop (Corner				
Ties At Vert	tical Bar S	Splices Shal	I Be Spaced	At 4 in. c	o.c. Maximu	m				
Horizontal Wa	all Reinfo	rcing Shall E	Be Hooked A	t Bounda	iry Edge					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.2

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butur	-	-	
Wall Length	9.5	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
			1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
Left End Bar Size	10	(3-10)	
Number of Bars	1		
Right End Bar Size	10	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

		,			
Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
1	7.64		4.75		
2	8.6		4.75		
3					
4					
5					

Lateral Loads Load No. Force, kips Height, ft.						
1	57.21	12				
2	1.8	6				
3						
4						
5						
6						

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wall	Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wall	Horizon	tal Reinforcir	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Ver	tical Reir	nforing Spaci	ng:	18	Actual:	12	OK			
Maximum Hor	izontal R	einforing Spa	acing:	18	Actual:	12	OK			
Double Curtai	n Reinfoi	cing Check:		Double R	Reinforcing (Curtain Rec	quired			
Hooked Shear	Reinfor	cing Check:		Hooked S	Shear Reinf	orcing IS R	lequired			
Maximum Axia	al Load C	neck:		OK						
Shear Check:			φ =	0.85						
V _u =	82.6	kips	$\phi V_n =$	134.2	kips	OK		DCR =	=	0.62
Bending Check:			φ =	0.88						
M _u left =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	-	2.40
M _u right =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	=	2.40
Boundary Memb	per Chec	<u>k:</u>								
Boundary Mer	nber Red	quired:	YES							
Minimum Bou	ndary Me	ember Length	ן =	17.1	in.					
Minimum Bou	ndary Me	ember Thickr	ness =	9.0	in.					
Minimum Bou	ndary Me	ember Steel =	=	0.8	sq.in.	Minimum	Number	Of Bars =	4	
Actual Boun	dary Mei	mber Steel =		1.3	sq.in.	Supplied I	Number (Of Bars =	1	
Maximum Lie	Spacing	=		0.0	in.					
Length/Widt	n Ratio (DT HOOP TIES	Shall Not E	xceed 3	•					
	Jr Hoops	s Shall Be Sp	aced 12 In.	O.C. Max	imum • Or Lleer (
Alternate ve	entical Ba	rs Snall Be C	De Oreced		e Or Hoop (Jorner				
	ICAI Bar S	Splices Shall	Be Spaced	AL4 IN. C	D.C. IVIAXIMU	[[]				
	ii Reinto	icing Shall B	е поокеа А	r Bonnga	iiy Euge					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.1

Input Data:

mpul Dala.	-	_	
Wall Length	13	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		_	
Left End Bar Size	8	(3-10)	
Number of Bars	2		
Right End Bar Size	8	(3-10)	
Number of Bars	2		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
Concrete Strength, f'c	3.5	ksi	
Reinforcing Yield, Fy	40	ksi	Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	10.45		6.5	
2	11.7		6.5	
3				
4				
5				

Lateral Loads Load No. Force, kips Height, ft.						
1	77.32	12				
2	2.5	6				
3						
4						
5						
6						

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall	Minimum Wall Vertical Reinforcing Ratio:			0.0025	Actual:	0.0028	OK		
Minimum Wall Horizontal Reinforcing Ratio:			0.0025	Actual:	0.0028	OK			
Maximum Vertical Reinforing Spacing:			18	Actual:	12	OK			
Maximum Horizontal Reinforing Spacing:			18	Actual:	12	OK			
Double Curtain Reinforcing Check:				Double R	Reinforcing (Curtain Red	quired		
Hooked Shear	r Reinford	ing Check:		Hooked S	Shear Reinf	orcing IS F	Required		
Maximum Axia	al Load C	heck:		OK					
Shear Check:			φ=	0.85					
V _u =	111.7	kips	φV _n =	183.7	kips	OK		DCR =	0.61
Bending Check:			φ=	0.88					
M _u left =	1320.0	ft-kips	$\phi M_n =$	699.2	ft-kips	Overstres	sed!	DCR =	1.89
M _u right =	1320.0	ft-kips	ϕM_n =	699.2	ft-kips	Overstres	sed!	DCR =	1.89

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.2

1998 CBC (1985 UBC Sim.)

_

Input Data:		_							
Wall Length		7 ft		Vertical L	oads, kips:	(Special = ass	embly, > 100 psf	or garage)	
Wall Thickness		<mark>6</mark> ir	۱.	Distance me	asured from le	eft end of wall,	ft.		
Unsupported Heig	ght	12 ft		Load No.	Dead, kips	Live, kips	Distance	Special (Y/	N)
				1	5.63		3.5		
Horizontal Bars		4 (:	3-9)	2	6.3		3.5		
Spacing		<u>12</u> ir	1.	3					
Vertical Bars		4 (;	3-9)	4					
Spacing		<u>12</u> ir	۱. 	5					
Single or Double	Curtain	<mark>S</mark> S	5/D						
			2 4 0 \		Lateral Loa	ads	l laimht a		
Left End Bar Size		9 (.	3-10)		LOad NO.	FORCE, kips	Height, ft.		
Number of Bars	6				1	27.01	12		
Right End Bar Siz	<u>ze</u>	9 (.	3-10)		2	1.3	0		
) ad				3				
Distance FIOIII EI		4 11	I. 2 6) if roo	wirod	4				
Doundary Tie Dai	5	(•	5-0) II req	luirea.	 				
Concrete Strengt	h fc	35 4	ci		0				
Reinforcing Yield,	, Fy	<u>40</u> k	si	Note: Pro	gram does	not calculat	e wall self we	eight!	
Minimum Wall Minimum Wall Minimum Wall Maximum Wall Maximum Vertia Maximum Horiz Double Curtain Hooked Shear Maximum Axial	Vertical I Horizonta cal Reini contal Re Reinforc Reinforc Load C	Reinforcing R al Reinforcing foring Spacing einforing Spaci cing Check: ing Check: heck:	atio: Ratio: g: cing:	0.0025 0.0025 18 18 Single Re Hooked S OK	Actual: Actual: Actual: Actual: inforcing C hear Reinfo	0.0028 0.0028 12 12 urtain Allow orcing IS Re	OK OK OK ed equired		
Shear Check:			φ=	0.85					
V _u =	39.6	kips	$\phi V_n =$	107.6	kips	OK		DCR =	0.37
Bending Check:			ф =	0.88					
M. left =	464 7	ft-kins	фМ ₂ =	232.4	ft-kins	Overstress	edl	DCR =	2 00
M right =	161.7	ft kine	тни тни =	232 /	ft kine	Overetrees			2.00
Boundary Member Boundary Member	464.7 <u>er Check</u> ber Req	π-κιρs <u>::</u> uired: Υ	φινι _n – ΈS	232.4	п-кірѕ	Overstress	ed!	DCR =	2.00
Minimum Bound	dary Me	mber Length	=	12.6	in.				
Minimum Bound	dary Me	mber Thickne	ss =	9.0	in.				
Minimum Bound	dary Me	mber Steel =		0.6	sq.in.	Minimum N	Number Of Ba	ars = 4	
Actual Bound	ary Men	nber Steel =		1.0	sq.in.	Supplied N	lumber Of Ba	ırs = 1	
Maximum Tie S	pacing =	=		0.0	in.				
Length/Width	Ratio O	f Hoop Ties S	Shall Not	Exceed 3					
Cross Ties Or	r Hoops	Shall Be Spa	ced 12 in	ı. o.c. Maxi	mum				
Alternate Vert	tical Bar	s Shall Be Co	nfined By	y Cross Tie	e Or Hoop C	Corner			
Ties At Vertic	al Bar S	plices Shall B	e Spaceo	d At 4 in. o	.c. Maximu	m			
Horizontal Wall	Reinfor	cing Shall Be	Hooked /	At Boundar	ry Edge	mhar			

Program: PC-03 CONCRETE SHEAR WALL Designation: SW1.1.1

Input Data:

Wall Length	49	ft.
Wall Thickness	12	in.
Unsupported Height	13	ft.
		_
Horizontal Bars	5	(3-
• •	4.0	.

Spacing	10
Vertical Bars	6
Spacing	12
Single or Double Curtain	S

Left End Bar Size	6
Number of Bars	6
Right End Bar Size	6
Number of Bars	6
Distance From End	12
Boundary Tie Bars	
Concrete Strength, fc	3.5

Concrete Strength, TC	
Reinforcing Yield, Fy	

12	in.	Distand
13	ft.	Load
	-	1
5	(3-9)	2
10	in.	3
6	(3-9)	4
12	in.	5
S	S/D	
6	(3-10)	
6		
6	(3-10)	
6		
12	in.	
	(3-6) if req	uired.
	-	
3.5	ksi	

ksi

40

Vertical Loads, kips	S: (Special = ass	sembly, > 100 p	sf or garage)
Distance measured from	left end of wall,	ft.	
Lood No. Dood			On a sigl ()

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)		
1	95.6		24.5				
2							
3							
4							
5							

Lateral Loads						
Load No.	Force, kips	Height, ft				
1	225.3	13				
2	10.2	6.5				
3						
4						
5						
6						

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall Vertical Reinforcing Ratio:			0.0015	Actual:	0.0031	OK			
Minimum Wal	I Horizon	tal Reinford	ing Ratio:	0.0020	Actual:	0.0026	OK		
Maximum Vertical Reinforing Spacing:			18	Actual:	12	OK			
Maximum Hor	rizontal R	einforing S	pacing:	18	Actual:	10	OK		
Double Curtain Reinforcing Check:			Double R	Reinforcing	Curtain Re	quired			
Hooked Shea	r Reinford	cing Check	:	Hooked S	Shear Rein	forcing Not	Required		
Maximum Axi	al Load C	heck:		OK					
Shear Check:			φ =	0.85					
V _u =	329.7	kips	$\phi V_n =$	1347.4	kips	OK		DCR =	0.24
Bending Check:	<u>:</u>		φ =	0.89					
M _u left =	4193.3	ft-kips	φM _n =	4503.2	ft-kips	OK		DCR =	0.93
M _u right =	4193.3	ft-kips	$\phi M_n =$	4503.2	ft-kips	OK		DCR =	0.93

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
+					

Program: PC-03 CONCRETE SHEAR WALL

12

S

6

6

6

6

6

3.5

40

in.

ksi

ksi

Designation: SW1.1.2

Input Data:

Spacing

Left End Bar Size

Number of Bars

Right End Bar Size

Number of Bars

Distance From End

Boundary Tie Bars

Wall Length	25	ft.
Wall Thickness	12	in.
Unsupported Height	13	ft.
		_
Horizontal Bars	5	(3-9)
Spacing	10	in.

Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft. Load No. Dead king Distance

	Biotaneo mo		ni ona or man,			
ft.	Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
	1	48.8		12.5		
(3-9)	2					1
in.	3					
(3-9)	4					
in.	5					
S/D						-
		Lateral Loa	ads			
(3-10)		Load No.	Force, kips	Height, ft.		
		1	119.5	13		
(3-10)		2	10.2	6.5		
		3				
in.		4				
(3-6) if req	uired.	5				
		6				

Concrete Strength, f'c Reinforcing Yield, Fy

Single or Double Curtain

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall Vertical Reinforcing Ratio:			0.0015	Actual:	0.0031	OK			
Minimum Wal	II Horizon	tal Reinfor	cing Ratio:	0.0020	Actual:	0.0026	OK		
Maximum Ver	rtical Reir	nforing Spa	acing:	18	Actual:	12	OK		
Maximum Ho	rizontal R	einforing S	Spacing:	18	Actual:	10	OK		
Double Curtai	in Reinfor	cing Chec	k:	Double R	Reinforcing	Curtain Re	quired		
Hooked Shea	r Reinford	cing Check	K:	Hooked S	Shear Reinf	orcing Not	Required		
Maximum Axi	al Load C	Check:		OK					
Shear Check:			φ =	0.85					
V _u =	181.6	kips	φV _n =	687.4	kips	OK		DCR =	0.26
Bending Check	<u>:</u>		φ=	0.89					
M _u left =	2267.7	ft-kips	φM _n =	2292.8	ft-kips	OK		DCR =	0.99
M _u right =	2267.7	ft-kips	$\phi M_n =$	2292.8	ft-kips	OK		DCR =	0.99

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

1998 CBC (1985 UBC Sim.)

Program: PC-03 CONCRETE SHEAR WALL Designation: SW5.1.5

in. (3-9) in. S/D

Input Data:

Wall Length	5.67	ft.
Wall Thickness	18	in.
Unsupported Height	5.75	ft.
Horizontal Bars	5	(3-9)

Tion Eontai Baro	•
Spacing	12
Vertical Bars	5
Spacing	12
Single or Double Curtain	D

Left End Bar Size	6	(3-10)
Number of Bars	3	
Right End Bar Size	6	(3-10)
Number of Bars	3	
Distance From End	3	in.
Boundary Tie Bars		(3-6) if required.
		-
Concrete Strength, f'c	3.5	ksi
Reinforcing Yield, Fy	40	ksi Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

Load No.	Dead, kips	Live, kips	Distance	Special (`	Y/N)
1	18.9		2.835		
2					
3					
4					
5					

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	27.4	5.75
2	4	2.875
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum (Checks:								
Minimum Wall	Minimum Wall Vertical Reinforcing Ratio:			0.0012	Actual	: 0.0029	OK		
Minimum Wall	Horizon	tal Reinfor	cing Ratio:	0.0020	Actual	: 0.0029	OK		
Maximum Ver	tical Reir	nforing Spa	acing:	18	Actual	: 12	OK		
Maximum Hori	Maximum Horizontal Reinforing Spacing:		18	Actual	: 12	OK			
Double Curtair	n Reinfo	rcing Chec	k:	Double F	Reinforcing	Curtain Re	quired		
Hooked Shear	Reinfor	cing Check	c :	Hooked \$	Shear Reir	nforcing Not	Required		
Maximum Axia	al Load C	Check:		OK					
Shear Check:			φ =	0.85					
V _u =	44.0	kips	$\phi V_n =$	243.4	kips	OK		DCR =	0.18
Bending Check:			φ =	0.89					
M _u left =	236.7	ft-kips	$\phi M_n =$	252.6	ft-kips	OK		DCR =	0.94
M _u right =	236.7	ft-kips	$\phi M_n =$	252.6	ft-kips	OK		DCR =	0.94

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
۰. ۲					

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 Concrete Beam ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Lic. # : KW-06003381 Licensee : AHEARN & KNOX, INC Joist J-1 (betw. gl 2 & 3; assembly) Description : **Material Properties** Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05 3.50 ksi 0.90 Φ Phi Values Δ Flexure : fc 1/2 fr = f'c 7.50 443.71 psi 0.750 Shear : = 145.0 pcf 0.850 Ψ Density β_1 λ LtWt Factor 10 3,372.17 ksi Elastic Modulus = Fy - Stirrups 40.0 ksi 2 2 29,000.0 ksi E - Stirrups = fy - Main Rebar = 40.0 ksi # Stirrup Bar Size # = 3 29.000.0 ksi E - Main Rebar = 2 Number of Resisting Legs Per Stirrup = 12 in 60 ir Load Combination 2006 IBC & ASCE 7-05 (0.3)(0 192 52°aw⇒2450′ft \$2¦aw⇒245) fi \$6jaw⇒2450 ft \$\$jaw⇒2450 fi \$6jaw⇒2450 f **Cross Section & Reinforcing Details** Tee Section, Stem Width = 12.0 in, Total Height = 15.0 in, Top Flange Width = 60.0 in, Flange Thickness = 3.0 in Span #1 Reinforcing 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span Span #2 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 16.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft in this span Span #3 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 24.0 ft in this span 1-#8 at 1.50 in from Bottom, from 6.0 to 18.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft in this span Span #4 Reinforcing 1-#8 at 1.50 in from Bottom, from 0.0 to 8.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span Span #5 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Loads on all spans... D = 0.0830 Uniform Load on ALL spans : D = 0.0830 ksf, Tributary Width = 3.0 ft Load for Span Number 1 Uniform Load : L = 0.10 ksf. Tributary Width = 3.0 ft. (corridor LL) Load for Span Number 2

Uniform Load : L = 0.10 ksf, Extent = 8.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (assembly LL) Uniform Load : L = 0.10 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 3.0 ft, (coridor) Load for Span Number 3 Uniform Load : L = 0.10 ksf, Extent = 0.0 -->> 18.0 ft, Tributary Width = 3.0 ft, (assembly LL) Uniform Load : L = 0.0450 ksf, Extent = 18.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (office LL) Load for Span Number 4

Uniform Load : L = 0.050 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 3.0 ft, (office LL) Uniform Load : L = 0.0640 ksf, Extent = 16.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (corridor LL)

Printed: 15 SEP 2011, 12:51PM

Decime Old

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # :	KW-06003381	

Description : Joist J-1 (betw. gl 2 & 3; assembly)

Load for Span Number 5

Uniform Load : L = 0.050 ksf, Tributary Width = 3.0 ft, (office LL)

DESIGN SUMMARY			Design	IUN	
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.882 : 1 Typical Section -50.717 k-ft 57 522 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection	0.111 in Ratio = -0.066 in Ratio = 0.154 in Ratio =	2595 4357 1869	
Load Combin ati@ 0D+0.50Lr+1.60L+1.60H Location of maximum on span Span # where maximum occurs	I, LL Comb Run (LL*L*) 0.000ft Span # 2	Max Upward Total Deflection	-0.041 in Ratio =	6972	

Vertical Reactions - Unfact	ored		5	Support notation	: Far left is #1		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
Overall MAXimum	5.442	15.052	13.998	11.326	11.528	4.012	
D Only	2.359	6.762	5.819	5.819	6.762	2.359	
L Only, LL Comb Run (****L)	0.004	-0.026	0.103	-0.388	2.347	1.559	
L Only, LL Comb Run (***L*)	-0.014	0.081	-0.325	2.123	2.264	-0.194	
L Only, LL Comb Run (***LL)	-0.009	0.056	-0.222	1.736	4.611	1.365	
L Only, LL Comb Run (**L**)	0.090	-0.539	3.950	3.126	-0.501	0.083	
L Only, LL Comb Run (**L*L)	0.094	-0.564	4.054	2.738	1.846	1.642	
L Only, LL Comb Run (**LL*)	0.076	-0.457	3.625	5.249	1.763	-0.110	
L Only, LL Comb Run (**LLL)	0.081	-0.483	3.728	4.861	4.110	1.449	
L Only, LL Comb Run (*L***)	-0.353	3.919	4.125	-0.620	0.155	-0.026	
L Only, LL Comb Run (*L**L)	-0.349	3.893	4.229	-1.008	2.502	1.533	
L Only, LL Comb Run (*L*L*)	-0.367	4.000	3.800	1.503	2.419	-0.219	
L Only, LL Comb Run (*L*LL)	-0.362	3.974	3.903	1.116	4.766	1.339	
L Only, LL Comb Run (*LL**)	-0.263	3.380	8.076	2.505	-0.346	0.058	
L Only, LL Comb Run (*LL*L)	-0.259	3.354	8.179	2.118	2.001	1.616	
L Only, LL Comb Run (*LLL*)	-0.277	3.461	7.750	4.629	1.918	-0.136	
L Only, LL Comb Run (*LLLL)	-0.273	3.436	7.854	4.241	4.265	1.423	
L Only, LL Comb Run (L****)	3.118	4.694	-0.775	0.207	-0.052	0.009	
L Only, LL Comb Run (L***L)	3.122	4.668	-0.672	-0.181	2.295	1.567	
L Only, LL Comb Run (L**L*)	3.104	4.775	-1.101	2.330	2.212	-0.185	
L Only, LL Comb Run (L**LL)	3.108	4.749	-0.997	1.943	4.559	1.374	
L Only, LL Comb Run (L*L**)	3.207	4.155	3.175	3.332	-0.552	0.092	
L Only, LL Comb Run (L*L*L)	3.212	4.129	3.279	2.945	1.795	1.651	
L Only, LL Comb Run (L*LL*)	3.194	4.237	2.850	5.456	1.712	-0.102	
L Only, LL Comb Run (L*LLL)	3.198	4.211	2.953	5.068	4.058	1.457	
L Only, LL Comb Run (LL***)	2.765	8.612	3.350	-0.413	0.103	-0.017	
L Only, LL Comb Run (LL**L)	2.769	8.587	3.454	-0.801	2.450	1.542	
L Only, LL Comb Run (LL*L*)	2.751	8.694	3.025	1.710	2.367	-0.211	
L Only, LL Comb Run (LL*LL)	2.755	8.668	3.128	1.322	4.714	1.348	
L Only, LL Comb Run (LLL**)	2.854	8.074	7.301	2.712	-0.397	0.066	
L Only, LL Comb Run (LLL*L)	2.859	8.048	7.404	2.325	1.950	1.625	
L Only, LL Comb Run (LLLL*)	2.841	8.155	6.975	4.836	1.867	-0.127	
L Only, LL Comb Run (LLLLL)	2.845	8.129	7.079	4.448	4.213	1.431	
D+L, LL Comb Run (****L)	2.363	6.736	5.922	5.431	9.109	3.918	
D+L, LL Comb Run (***L*)	2.345	6.844	5.493	7.942	9.026	2.165	
D+L, LL Comb Run (***LL)	2.350	6.818	5.597	7.555	11.373	3.724	
D+L, LL Comb Run (**L**)	2.449	6.224	9.769	8.944	6.262	2.442	
D+L, LL Comb Run (**L*L)	2.453	6.198	9.872	8.557	8.609	4.001	
D+L, LL Comb Run (**LL*)	2.435	6.305	9.444	11.068	8.526	2.249	
D+L, LL Comb Run (**LLL)	2.439	6.279	9.547	10.680	10.872	3.808	
D+L, LL Comb Run (*L***)	2.006	10.681	9.944	5.199	6.917	2.333	
D+L, LL Comb Run (*L**L)	2.010	10.655	10.047	4.811	9.264	3.892	
D+L, LL Comb Run (*L*L*)	1.992	10.762	9.619	7.322	9.181	2.140	
D+L, LL Comb Run (*L*LL)	1.997	10.736	9.722	6.934	11.528	3.698	
D+L, LL Comb Run (*LL**)	2.096	10.142	13.894	8.324	6.417	2.417	
D+L, LL Comb Run (*LL*L)	2.100	10.117	13.998	7.937	8.764	3.975	
D+L, LL Comb Run (*LLL*)	2.082	10.224	13.569	10.448	8.681	2.223	
D+L, LL Comb Run (*LLLL)	2.086	10.198	13.672	10.060	11.027	3.782	
D+L, LL Comb Run (L****)	5.390	11.653	4.904	6.063	6.701	2.369	
D+L, LL Comb Run (L***L)	5.392	11.632	5.004	5.676	9.048	3.928	
D+L, LL Comb Run (L**L*)	5.382	11.722	4.588	8.184	8.966	2.175	
D+L, LL Comb Run (L**LL)	5.384	11.700	4.688	7.797	11.312	3.734	

Project Notes :

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Licensee : AHEARN & KNOX, INC

Concrete Beam

Lic. # : KW-06003381

Description : Joist J-1 (betw. gl 2 & 3; assembly)

Vertical Reactions - Unfact	tored		5	Support notation	: Far left is #1		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
D+L, LL Comb Run (L*L**)	5.439	11.206	8.790	9.206	6.196	2.453	
D+L, LL Comb Run (L*L*L)	5.442	11.185	8.890	8.819	8.543	4.012	
D+L, LL Comb Run (L*LL*)	5.432	11.273	8.474	11.326	8.461	2.260	
D+L, LL Comb Run (L*LLL)	5.434	11.252	8.574	10.940	10.808	3.818	
D+L, LL Comb Run (LL***)	5.290	15.003	9.425	5.342	6.882	2.339	
D+L, LL Comb Run (LL**L)	5.289	14.987	9.521	4.956	9.228	3.898	
D+L, LL Comb Run (LL*L*)	5.290	15.052	9.122	7.460	9.147	2.145	
D+L, LL Comb Run (LL*LL)	5.290	15.037	9.218	7.074	11.493	3.704	
D+L, LL Comb Run (LLL**)	5.279	14.691	13.218	8.507	6.371	2.424	
D+L, LL Comb Run (LLL*L)	5.278	14.676	13.314	8.122	8.717	3.983	
D+L, LL Comb Run (LLLL*)	5.281	14.737	12.917	10.625	8.636	2.230	
D+L, LL Comb Run (LLLLL)	5.280	14.723	13.012	10.239	10.983	3.789	

Shear Stirrup Requirements

Between 0.00 to 19.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 20.40 to 27.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at 0.000 in Between 27.60 to 45.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 45.60 to 50.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at 0.000 in Between 71.00 to 70.20 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 72.00 to 95.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 96.00 to 96.60 ft, PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination			Dondin	a Stross Deput	c (kft)
	• "	Location (ft)		y Siless Result	5 (K-IL)
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envelo	оре				
Span # 1	1	23.400	-43.98	57.52	0.76
Span # 2	2	24.000	-50.72	57.52	0.88
Span # 3	3	48.000	-42.92	57.52	0.75
Span # 4	4	72.000	-35.54	57.52	0.62
Span # 5	5	96.000	-35.80	57.52	0.62
+1.40D					
Span # 1	1	23.400	-18.16	57.52	0.32
Span # 2	2	24.000	-21.14	57.52	0.37
Span # 3	3	48 000	-15.85	57.52	0.28
Span # 4	ŭ 4	95 400	-18 56	57.52	0.32
Span # 5	5	96,000	-21 14	57.52	0.02
$\pm 1.20D\pm 0.501$ r $\pm 1.601\pm 1.601$		50.000	-21.14	57.52	0.07
Span # 1		23 100	15.40	57 52	0.27
Span # 2	1	23.400	-10.40	57.52	0.27
Span # 2	2	24.000	-17.95	57.52	0.31
Span # 3	3	48.000	-14.25	57.52	0.25
Span # 4	4	95.400	-24.87	57.52	0.43
Span # 5	5	96.000	-27.38	57.52	0.48
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb		40.07		
Span # 1	1	23.400	-16.07	57.52	0.28
Span # 2	2	24.000	-18.64	57.52	0.32
Span # 3	3	71.400	-19.05	57.52	0.33
Span # 4	4	84.000	16.39	35.90	0.46
Span # 5	5	96.000	-25.55	57.52	0.44
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	23.400	-15.91	57.52	0.28
Span # 2	2	24.000	-18.47	57.52	0.32
Span # 3	3	71.400	-16.65	57.52	0.29
Span # 4	4	95.400	-30.37	57.52	0.53
Span # 5	5	96.000	-34.81	57.52	0.61
+1.20D+0.50Lr+1.60L+1.60	H. LL Comb				
Span # 1	1	3 600	8 77	35 90	0 24
Span # 2	2	47 400	-24.96	57 52	0.43
Span # 3	3	48 000	-27.37	57.52	0.48
Span # 4	4	72 000	-26.40	57 52	0.46
Span # 5	- 5	96.000	_14 91	57 52	0.40
± 1.20 D ± 0.50 r ± 1.60 ± 1.60	H II Comh	30.000	-14.31	51.52	0.20
Span # 1	1, LL 001110	3 600	8 80	35.00	0.25
Spall # 1 Span # 2	1 0	3.000	0.00	50.90	0.23 0.4F
Span # 2	2	47.400	-20.00	57.52	0.45
Span # 3	3	40.000	-20.04	57.52	0.49
Span # 4	4	72.000	-23.92	57.52	0.42

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Joist	J-1 (betw. gl	2 & 3; assembly)						
Load Combination		Location (ft)	Be	ending Stress Result	s (k-ft)			
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio			
Span # 2	2	24.000	-27.01	57.52	0.47			
Span # 3	3	48.000	-21.20	57.52	0.37			
Span # 4	4	95.400	-18.01	57.52	0.31			
Span # 5	5	96.000	-20.22	57.52	0.35			
+1.20D+0.50L+0.20S+E, LL	Comb Run (
Span # 1	1	23.400	-23.40	57.52	0.41			
Span # 2	2	24.000	-27.23	57.52	0.47			
Span # 3	3	48.000	-20.35	57.52	0.35			
Span # 4	4	72.000	-19.21	57.52	0.33			
Span # 5	5	96.000	-19.65	57.52	0.34			
+1.20D+0.50L+0.20S+E. LL	. Comb Run (
Span # 1	1	23.400	-23.35	57.52	0.41			
Span # 2	2	24.000	-27.18	57.52	0.47			
Span # 3	3	48.000	-20.55	57.52	0.36			
Span # 4	4	95.400	-19.73	57.52	0.34			
Span # 5	5	96.000	-22.54	57.52	0.39			
+0.90D+1.60W+1.60H								
Span # 1	1	23.400	-11.67	57.52	0.20			
Span # 2	2	24.000	-13.59	57.52	0.24			
Span # 3	3	48.000	-10.19	57.52	0.18			
Span # 4	4	95,400	-11.93	57.52	0.21			
Span # 5	5	96.000	-13.59	57.52	0.24			
+0.90D+E+1.60H								
Span # 1	1	23.400	-11.67	57.52	0.20			
Span # 2	2	24.000	-13.59	57.52	0.24			
Span # 3	3	48.000	-10.19	57.52	0.18			
Span # 4	4	95.400	-11.93	57.52	0.21			
Span # 5	5	96.000	-13.59	57.52	0.24			
Overall Maximum D	eflections	- Unfactored	d Loads					
Load Combination		Snan M	lav "-" Dofl	Location in Span	Lood Combination	N/	lav "+" Dofl	Location in Span

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*L)	1	0.1540	10.800	D+L, LL Comb Run (L*L*L)	-0.0109	25.200
D+L, LL Comb Run (*L*L*)	2	0.0641	13.200	D+L, LL Comb Run (L*L*L)	-0.0280	3.600
D+L, LL Comb Run (L*L*L)	3	0.0787	10.800	D+L, LL Comb Run (L*L*L)	-0.0060	25.200
D+L, LL Comb Run (*L*L*)	4	0.0427	10.800	D+L, LL Comb Run (L*L*L)	-0.0149	20.400
D+L, LL Comb Run (L*L*L)	5	0.0843	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

108) 978-1970	1		
VWW.AKHSE.COM	Р	roject Notes :	
			Printed: 15 SEP 2011, 12:51PM
concrete Beam		File: P:\Cupertino\M11-040 City Hall An ENERCALC, INC, 198	alysis\Calcs\m11-040 enercalc.ec6 3-2011, Build:6.11.9.9, Ver:6.11.9.9
c. # : KW-06003381		License	e : AHEARN & KNOX, INC
escription : Joist J-1 (betw. gl 1 & 2; corridor)			
laterial Properties		Calculations per ACI 318-08, IBC 20	09, CBC 2010, ASCE 7-0
$^{1/2}$ = 3.50 ksi	♦ Phi Values Flexure : 0.90		
$r = fc^{-1} / .50 = 443.71 \text{psi}$	Shear: 0.750		
ψ Density = 145.0 pcr	$\beta_1 = 0.850$		
LIVIT FACTOR = 1.0			
= 3,372.17 ks	Fy - Surrups = 20,000,0 ks	I に 	
y - Main Rebar = 40.0 ksi	E - Surrup S = 29,000.0 ks Stirrup Bar Size # = # 3		
- Main Rebar = 29,000.0 ksi	$\frac{1}{2} \log \log \frac{1}{2} \log $		
Number of Resisting	j Legs Per Sunup – 2	4 12 in 60 in	→,
oad Combination 2006 IBC & ASCE 7-05			
	D(0.2490) L(0.3	0)	
span=24:0 n span=2	4:0 ft 5-part=24:0 ft	Separi=≥4:0 ft	Span=⊻4:0 ft
Cross Section & Reinforcing Details Tee Section, Stem Width = 12.0 in, Total Heigh	it = 15.0 in, Top Flange Width = 60.0	in, Flange Thickness = 3.0 in	
Span #1 Reinforcing			
1-#8 at 1.50 in from Bottom, from 0.0 to 20	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 4.0 to 24.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft	in this span	1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in	this span
1-#8 at 2.0 In from 10p, from 16.0 to 24.0	t in this span		
1-#8 at 1.50 in from Bottom from 0.0 to 20	0 ft in this span	1-#8 at 1 50 in from Bottom from 16 0 to 24	0 ft in this span
1-#8 at 2.0 in from Top. from 0.0 to 8.0 ft i	this span	1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft in	this span
1-#8 at 2.0 in from Top, from 16.0 to 24.0	t in this span	1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft i	n this span
Span #3 Reinforcing			
1-#8 at 1.50 in from Bottom, from 0.0 to 24	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 6.0 to 18.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft ii	n this span	1-#8 at 2.0 in from 1 op, from 0.0 to 24.0 ft in	this span
1-#8 at 2.0 In from Top, from 18.0 to 24.0	t in this span		
1-#8 at 1 50 in from Rottom from 0.0 to 9) ft in this snap	1.#8 at 1.50 in from Rottom, from 4.0 to 24.0	Ift in this span
1-#8 at 2.0 in from Top from 0.0 to 6.0 ft in	this span	1-#8 at 2.0 in from Top from 0.0 to 8.0 ft in t	his span
1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft	in this span	1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft i	n this span
Span #5 Reinforcing			· · · · · · · · · · · · · · · · · · ·
1-#8 at 1.50 in from Bottom, from 0.0 to 20	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 4.0 to 24.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft 1-#8 at 2.0 in from Top. from 4.0 to 24.0 ft	in this span in this span	1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in t	his span
pplied Loads	-r -	Service loads entered. Load Factors will	be applied for calculations
oads on all spans			
D = 0.0830, L = 0.10			
Uniform Load on ALL spans : $D = 0.0830$. $L = 0.0830$	· · · · · · · · · · · · · · · · · · ·		
	0.10 kst, Tributary Width = 3.0 ft	_	

DESIGN SUMMANT			Design		
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.890 : 1 Typical Section -51.188 k-ft 57.522 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.113 in Ratio = -0.067 in Ratio = 0.156 in Ratio = -0.044 in Ratio =	2549 4301 1846 6573	
Location of maximum on span	0.000ft				
Span # where maximum occurs	Span # 5				
•					

Concrete Beam

Lic. # : KW-06003381

Joist J-1 (betw. gl 1 & 2; corridor) Description :

Vertical Reactions - Unfactor	red		Support notation : Far left is #1				
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
Overall MAXimum	5.448	15.098	14.275	14.275	15.107	5.448	
D Only	2.359	6.762	5.819	5.819	6.762	2.359	
L Only, LL Comb Run (****L)	0.009	-0.052	0.207	-0.775	4.694	3.118	
L Only, LL Comb Run (***L*)	-0.026	0.155	-0.620	4.125	3.919	-0.353	
L Only, LL Comb Run (***LL)	-0.017	0.103	-0.413	3.350	8.612	2.765	
L Only, LL Comb Run (**L**)	0.095	-0.568	4.074	4.074	-0.568	0.095	
L Only, LL Comb Run (**LL*)	0.103	-0.620	4.280	3.299	4.125	3.212	
L Only, LL Comb Run (**LLL)	0.009	-0.413	3.454	0.199 7.494	3.330 8.044	-0.250	
L Only, LL Comb Run (*L***)	-0.353	-0.403	3.000 4 125	-0.620	0.044	-0.026	
L Only, LL Comb Run (*L **L)	-0.344	3 867	4.332	-1.395	4 849	3 092	
L Only, LL Comb Run (*L*L*)	-0.379	4.074	3.505	3.505	4.074	-0.379	
L Only, LL Comb Run (*L*LL)	-0.370	4.022	3.712	2.730	8.767	2.739	
L Only, LL Comb Run (*LL**)	-0.258	3.350	8.199	3.454	-0.413	0.069	
L Only, LL Comb Run (*LL*L)	-0.250	3.299	8.406	2.678	4.280	3.187	
L Only, LL Comb Run (*LLL*)	-0.284	3.505	7.579	7.579	3.505	-0.284	
L Only, LL Comb Run (*LLLL)	-0.276	3.454	7.786	6.804	8.199	2.833	
L Only, LL Comb Run (L****)	3.118	4.694	-0.775	0.207	-0.052	0.009	
L Only, LL Comb Run (L***L)	3.126	4.642	-0.568	-0.568	4.642	3.126	
L Only, LL Comb Run (L**L*)	3.092	4.849	-1.395	4.332	3.867	-0.344	
L Only, LL Comb Run (L**LL)	3.100	4.797	-1.189	3.557	8.561	2.773	
L Only, LL Comb Run (L*L**)	3.212	4.125	3.299	4.280	-0.620	0.103	
L Only, LL Comb Run (L L L)	3.221	4.074	3.505	3.303	4.074	0.221 0.250	
L Only, LL Comb Run (L LL)	3.107	4.200	2.070	7 631	7 992	2 868	
L Only, LL Comb Run (LL ***)	2 765	8 612	3 350	-0.413	0 103	-0.017	
L Only, LL Comb Run (LL**L)	2.773	8.561	3.557	-1.189	4,797	3.100	
L Only, LL Comb Run (LL*L*)	2.739	8.767	2.730	3.712	4.022	-0.370	
L Only, LL Comb Run (LL*LL)	2.747	8.716	2.937	2.937	8.716	2.747	
L Only, LL Comb Run (LLL**)	2.859	8.044	7.424	3.660	-0.465	0.078	
L Only, LL Comb Run (LLL*L)	2.868	7.992	7.631	2.885	4.229	3.195	
L Only, LL Comb Run (LLLL*)	2.833	8.199	6.804	7.786	3.454	-0.276	
L Only, LL Comb Run (LLLLL)	2.842	8.147	7.011	7.011	8.147	2.842	
D+L, LL Comb Run (****L)	2.369	6.701	6.063	4.904	11.653	5.390	
D+L, LL Comb Run (***L*)	2.333	6.917	5.199	9.944	10.681	2.006	
D+L, LL Comb Run (***L**)	2.339	6.881	5.343	9.419	15.013	5.285	
D+L, LL Comb Run (L)	2.404	6 128	9.092	9.092	0.194	Z.404 5 //2	
D+L, LL Comb Run (*LL*)	2.403	6 349	9 272	14 018	10 113	2 101	
D+L L Comb Run (** L)	2 436	6 302	9 4 5 9	13 325	14 684	5 273	
D+L. LL Comb Run (*L***)	2.006	10.681	9.944	5,199	6.917	2.333	
D+L, LL Comb Run (*L**L)	2.016	10.621	10.183	4.301	11.784	5.375	
D+L, LL Comb Run (*L*L*)	1.980	10.836	9.324	9.324	10.836	1.980	
D+L, LL Comb Run (*L*LL)	1.986	10.803	9.457	8.841	15.107	5.286	
D+L, LL Comb Run (*LL**)	2.101	10.113	14.018	9.272	6.349	2.428	
D+L, LL Comb Run (*LL*L)	2.111	10.048	14.275	8.308	11.309	5.428	
D+L, LL Comb Run (*LLL*)	2.075	10.268	13.398	13.398	10.268	2.075	
D+L, LL Comb Run (*LLLL)	2.082	10.224	13.573	12.751	14.774	5.276	
D+L, LL Comb Run (L***)	5.390	11.653	4.904	6.063 5.142	6.701 11.601	2.369	
D+L, LL Comb Run (L ×1 *)	5.390	11.001	0.140 1 201	0.140 10.183	10.621	0.090 2.016	
D+L, LL Comb Run (L*1L)	5 377	11.704	4.301	9 645	14 974	5 285	
D+L, LL Comb Run (L*L**)	5 442	11 181	8 909	10 155	6 128	2 465	
D+L L Comb Run (L*L*L)	5 448	11 125	9 166	9 166	11 125	5 448	
D+L. LL Comb Run (L*LL*)	5.428	11.309	8.308	14.275	10.048	2.111	
D+L, LL Comb Run (L*LLL)	5.432	11.270	8.493	13.569	14.642	5.274	
D+L, LL Comb Run (LL***)	5.290	15.003	9.425	5.342	6.882	2.339	
D+L, LL Comb Run (LL**L)	5.290	14.964	9.651	4.442	11.755	5.377	
D+L, LL Comb Run (LL*L*)	5.290	15.098	8.846	9.457	10.803	1.986	
D+L, LL Comb Run (LL*LL)	5.288	15.082	8.970	8.964	15.092	5.283	
D+L, LL Comb Run (LLL**)	5.278	14.673	13.333	9.458	6.303	2.436	
D+L, LL Comb Run (LLL*L)	5.279	14.631	13.576	8.491	11.271	5.432	
D+L, LL Comb Run (LLLL*)	5.282	14.763	12.758	13.571	10.224	2.082	
D+L, LL COMD RUN (LLLLL)	5.279	14.740	12.922	12.914	14./51	5.274	

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Printed: 15 SEP 2011, 12:51PM

File: P:\CupertinoiM11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Concrete Beam

Lic. # : KW-06003381

Description : Joist J-1 (betw. gl 1 & 2; corridor)

Shear Stirrup Requirements

Between 0.00 to 19.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 20.40 to 27.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 27.60 to 45.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 45.60 to 51.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 51.60 to 68.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 69.00 to 74.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 75.00 to 92.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 93.00 to 99.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 100.20 to 119.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending	g Stress Result	s (k-ft)
Segment Length	Span #	in Span	Mu : Max	Phi*Mny	Stress Ratio
MAXimum BENDING Envol	200	in opun			
Spop # 1	Jpe 1	22 400	A A A A	E7 E9	0.77
Span # 2	1	23.400	-44.44	57.52	0.77
Span # 2	2	24.000	-31.19	57.5Z	0.09
Span # 3	3	48.000	-44.34	57.52	0.77
Span # 4	4	95.400	-44.93	57.52	0.78
Span # 5	5	96.000	-51.19	57.52	0.89
+1.40D					
Span # 1	1	23.400	-18.16	57.52	0.32
Span # 2	2	24.000	-21.14	57.52	0.37
Span # 3	3	48.000	-15.85	57.52	0.28
Span # 4	4	95.400	-18.56	57.52	0.32
Span # 5	5	96.000	-21.14	57.52	0.37
+1.20D+0.50Lr+1.60L+1.60	H. LL Comb				
Span # 1	1	23 400	-15 24	57 52	0 27
Span # 2	2	24 000	-17 79	57.52	0.31
Span # 3	2	18 000	_1/ 01	57.52	0.26
Span # 1	3	95.000	23.84	57.52	0.20
Span # 5	4	55.400 ## ###	-00.04	J1.52 2F 00	0.08
		##.###	23.10	33.90	0.04
+1.20D+0.50LF+1.60L+1.60I		00 400	40 50		0.00
Span # 1	1	23.400	-16.53	57.52	0.29
Span # 2	2	24.000	-19.11	57.52	0.33
Span # 3	3	71.400	-25.90	57.52	0.45
Span # 4	4	84.000	26.00	35.90	0.72
Span # 5	5	96.000	-31.68	57.52	0.55
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	[′] 1	23.400	-16.21	57.52	0.28
Span # 2	2	24,000	-18.78	57.52	0.33
Span # 3	3	71 400	-21 10	57.52	0.37
Span # 4	4	95 400	-44.06	57 52	0.77
Span # 5	5	96,000	-50.20	57 52	0.87
+1.200+0.501r+1.601+1.601		30.000	-30.20	57.52	0.07
+1.20D+0.30LI+1.00L+1.00I		2 600	0 00	25.00	0.25
Span # 2	1	3.000	0.00	55.90	0.25
Span # 2	2	47.400	-25.70	57.52	0.45
Span # 3	3	48.000	-28.14	57.52	0.49
Span # 4	4	72.000	-28.14	57.52	0.49
Span # 5	5	96.000	-14.48	57.52	0.25
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	3.600	8.85	35.90	0.25
Span # 2	2	47.400	-26.98	57.52	0.47
Span # 3	3	48.000	-29.46	57.52	0.51
Span #4	4	95,400	-30.66	57.52	0.53
Span # 5	5	## ###	23.65	35.90	0.66
+1.20D+0.50Ir+1.60I+1.60I	H I I Comb		20100		0.00
Snan # 1	1	3 600	8 65	35.00	0.24
Span # 2	2	47.400	0.00	55.50	0.24
Span # 2	2	47.400	-21.00	57.52	0.36
Span # 3	3	/ 1.400	-31.UX	57.52	0.64
Span # 4	4	/2.000	-43.02	57.52	0.75
Span # 5	5	96.000	-28.04	57.52	0.49
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	3.600	8.70	35.90	0.24
Span # 2	2	47.400	-23.14	57.52	0.40
Span # 3	3	71.400	-32.28	57.52	0.56
Span # 4	4	95.400	-40.88	57.52	0.71
Span # 5	5	96.000	-46.56	57.52	0.81
+1 20D+0 50l r+1 60l +1 60l	H II Comb				2.0.
Span # 1	1	23 400	-28 79	57 52	0.50
Span # 2	2	36,000	26.00	35.00	0.00
00011 # 2	2	00.000	20.00	55.50	0.12

Project Notes :

Concrete Beam

Lic. # : KW-06003381 Description : Joist J-1 (betw. gl 1 & 2; corridor)

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Licensee : AHEARN & KNOX, INC

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)	
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	
+0.90D+1.60W+1.60H						
Span # 1	1	23.400	-11.67	57.52	0.20	
Span # 2	2	24.000	-13.59	57.52	0.24	
Span # 3	3	48.000	-10.19	57.52	0.18	
Span # 4	4	95.400	-11.93	57.52	0.21	
Span # 5	5	96.000	-13.59	57.52	0.24	
+0.90D+E+1.60H						
Span # 1	1	23.400	-11.67	57.52	0.20	
Span # 2	2	24.000	-13.59	57.52	0.24	
Span # 3	3	48.000	-10.19	57.52	0.18	
Span # 4	4	95.400	-11.93	57.52	0.21	
Span # 5	5	96.000	-13.59	57.52	0.24	

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*L)	1	0.1560	10.800	D+L, LL Comb Run (L*L*L)	-0.0112	25.200
D+L, LL Comb Run (*L*L*)	2	0.0667	13.200	D+L, LL Comb Run (L*L*L)	-0.0289	3.600
D+L, LL Comb Run (L*L*L)	3	0.0869	13.200		0.0000	3.600
D+L, LL Comb Run (*L*L*)	4	0.0667	10.800	D+L, LL Comb Run (L*L*L)	-0.0289	20.400
D+L, LL Comb Run (L*L*L)	5	0.1560	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

Printed: 15 SEP 2011, 12:51PM

Project Notes :

Concrete Beam

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G1 (gridline B)

Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL)

Lic. # : KW-06003381 Girder G1 (g Description :

Span # where maximum occurs

Project Notes :

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Liconsoo : AHEARN & KNOX IN

Description :	Girder G1 (gridline B)					
DESIGN SUN	IMARY				Desig	n OK
Maximum Ber	nding Stress Ratio =	0.542 : 1	Maximum Deflection			
Section used	I for this span	Typical Section	Max Downward L+Lr+S Deflection	0.032 in	Ratio =	8907
Ν	/u : Applied	-352.01 k-ft	Max Upward L+Lr+S Deflection	-0.037 in	Ratio =	7683
Ν	/In * Phi : Allowable	649.56 k-ft	Max Downward Total Deflection	0.063 in	Ratio =	4605
Load Combina Location of ma	atib@0D+0.50Lr+1.60L+1.6 aximum on span	60H, LL Comb Run (LL*L) 0.000ft	Max Upward Total Deflection	-0.009 in	Ratio =	32410

Support notation : Far left is #1 **Vertical Reactions - Unfactored** Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 38.150 111.577 96.809 106.834 37.978 24.665 58.299 71.753 24.665 D Only 71.753 L Only, LL Comb Run (***L) -0.136 0.818 -3.271 19.898 13.220 0.409 -2.453 17.445 16.627 -1.499 L Only, LL Comb Run (**L*) L Only, LL Comb Run (**LL) 0.273 -1.635 14.174 36.525 11.721 L Only, LL Comb Run (*L**) -1.810 20.078 21.065 -2.9620.494 16.935 L Only, LL Comb Run (*L*L) -1.947 20.895 17.794 13.713 L Only, LL Comb Run (*LL*) -1.401 17.625 38.510 13.665 -1.005 L Only, LL Comb Run (*LLL) -1.538 18.442 35.239 33.562 12.214 -0.145 13.441 21.955 -3.480 0.870 L Only, LL Comb Run (L***) L Only, LL Comb Run (L**L) 13.304 22.772 -6.751 20.768 13.075 13.850 19.501 13.964 17.497 -1.644 L Only, LL Comb Run (L*L*) L Only, LL Comb Run (L*LL) 13.713 20.319 10.693 37.395 11.576 L Only, LL Comb Run (LL**) 11.630 42.032 17.585 -2.092 0.349 11.494 42 850 14.314 17.806 13.568 L Only, LL Comb Run (LL*L) L Only, LL Comb Run (LLL*) 12.039 39.579 35.029 14.535 -1.150 L Only, LL Comb Run (LLLL) 11.903 40.397 31.758 34.432 12.069 37.742 D+L, LL Comb Run (***L) 24.517 72.639 54.783 91 982 D+L, LL Comb Run (**L*) 25.074 69.300 75.744 88.380 23.166 D+L, LL Comb Run (**LL) 24.995 69.776 73.933 106.155 37.333 D+L, LL Comb Run (*L**) 22.855 91.831 79.365 68.791 25.159 D+L, LL Comb Run (*L*L) 22.712 92.768 75.451 89.640 37.956 D+L, LL Comb Run (*LL*) 23.264 89.378 96.809 85.418 23.660 90.040 94.223 104.307 23.153 37.332 D+L, LL Comb Run (*LLL) D+L, LL Comb Run (L***) 38.005 93.947 54.631 72.681 24.510 D+L, LL Comb Run (L**L) 37.947 94.617 51.366 92.701 37.673 D+L, LL Comb Run (L*L*) 38.122 92.149 71.626 89.413 22.994 D+L, LL Comb Run (L*LL) 38.150 92.351 70.188 106.834 37.308 110.898 77.866 69.199 25.091 D+L, LL Comb Run (LL**) 37.585 D+L, LL Comb Run (LL*L) 37.550 111.577 74.239 89.824 37.978 94.685 D+L, LL Comb Run (LLL*) 37.593 109.348 85.976 23.567 D+L, LL Comb Run (LLLL) 37.622 109.663 92.523 104.501 37.387

Span # 2

Shear Stirrup Requirements

Between 0.00 to 4.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 5.40 to 13.80 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in Between 14.40 to 20.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 21.00 to 25.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 10.000 in Between 26.40 to 32.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 33.00 to 40.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 41.40 to 45.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 46.20 to 49.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 12.000 in Between 50.40 to 54.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 55.20 to 64.20 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in Between 64.80 to 69.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 69.60 to 74.40 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 10.000 in Between 75.00 to 81.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 82.20 to 90.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)		
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	-	
MAXimum BENDING Envelo	оре						
Span # 1	1	23.400	-305.27	649.56	0.47		
Span # 2	2	24.000	-352.01	649.56	0.54		

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Girder	G1 (gridline	B)					
Load Combination		Location (ff)	В	ending Stress Result	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	72.000	-145.30	751.89	0.19		
Overall Maximum De	eflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*)	1	0.0625	10.800	D+L, LL Comb Run (L*L*)	-0.0033	25.200
D+L, LL Comb Run (*L*L)	2	0.0291	13.200		0.0000	25.200
D+L, LL Comb Run (L*L*)	3	0.0261	10.800	D+L, LL Comb Run (*L*L)	-0.0078	20.400
D+L, LL Comb Run (*L*L)	4	0.0608	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Concrete Beam

Load for Span Number 3

Load for Span Number 4

Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 24.0 ft, (Corridor LL) Uniform Load : L = 0.0420 ksf, Extent = 8.0 -->> 16.0 ft, Tributary Width = 24.0 ft, (Office LL)

Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (Office LL)

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G2 (gridline C; fixed seating)

Project Notes :

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC INC 1983-2011 Build 6 11 9 9 Ver 6 11 9 9

Licensee : AHEARN & KNOX, 16

Description :	Girder G2 (gridline C; fixed seating)
---------------	---------------------------------------

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.841 : 1 Typical Section -369.18 k-ft 439.06 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection	0.120 in Ratio = 3204 -0.073 in Ratio = 5289 0.181 in Ratio = 2118
Load Combination20D+0.50Lr+1.60L+1. Location of maximum on span Span # where maximum occurs	60H, LL Comb Run (*LL*) 0.000ft Span # 3	Max Upward Total Deflection	-0.028 m Ratio = 6791
Martha I Departieurs - Hafa stand		Support potation - For loft is #1	

Lad Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 34.529 124.971 108.545 82.567 37.310 D Only L2 Comb Run (""L) 0.099 0.434 -3.681 17.326 10.212 L Only, LL Comb Run (""L) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run (""L) -3.190 25.474 31.350 -8.393 0.039 L Only, LL Comb Run ("L") -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("L") -3.315 25.224 39.400 18.666 10.499 L Only, LL Comb Run (L"1) -3.315 25.224 39.400 18.666 10.499 L Only, LL Comb Run (L"1) -11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L"1) 11.031 19.404 -8.402 18.478 10.097 L Only, LL Comb Run (L"1) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb R	Vertical Readtions Officies	icu					
Owerall MAXimum 34 529 124 971 106 545 82 567 37 310 D Only, LL Comb Run (""L) 0.099 0.434 -3.681 17 326 10.212 L Only, LL Comb Run ("L) 0.055 -0.240 8 050 27 020 9 659 L Only, LL Comb Run ("L") -3.190 25 474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.055 24 800 43.061 1.300 0.286 L Only, LL Comb Run ("LL) -3.305 24 800 43.061 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L") -1.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.185 18.790 5.329 28.171 9.544 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.940 44.475 28.628 -7.124 0.724 L Only, LL Comb Run (LL) 7.940 <td>Load Combination</td> <td>Support 1</td> <td>Support 2</td> <td>Support 3</td> <td>Support 4</td> <td>Support 5</td> <td></td>	Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	
D Only 22 211 84 361 63.586 54.369 26.609 L Only, LL Comb Run ("L') 0.154 -0.674 11.731 9.669 -0.553 L Only, LL Comb Run ("L') 0.155 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L') -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.243 39.400 18.626 10.499 L Only, LL Comb Run (L'L') 11.301 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L'L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L'L) 11.824 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L'L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.940 44.878 10.084 10.938 -0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 -0.724 <t< td=""><td>Overall MAXimum</td><td>34.529</td><td>124.971</td><td>108.545</td><td>82.567</td><td>37.310</td><td></td></t<>	Overall MAXimum	34.529	124.971	108.545	82.567	37.310	
L Only, LL Comb Run (""L) -0.099 0.434 -3681 77.326 10.212 L Only, LL Comb Run ("L) 0.154 -0.674 11.731 9.694 -0.553 L Only, LL Comb Run ("L) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L) -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL) -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.625 10.499 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.625 10.499 L Only, LL Comb Run ("LL) 11.131 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L) 11.131 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run ("L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("L) 19.406 10.8639 39.4061 61.991 37.310 D+L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run ("LL) 19.406 10.8723 108.545 53.993 D+L, LL Comb Run ("LL) 19.408 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.404 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.404 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 19.4475 97.666 43.699 37.249 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 19.4529 100.053 94.061 61.991 37.310 D+L, LL Comb Run ("LL) 19.4529 100.053 94.061 61.991 37.310 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 31.741 124.971 33.294 62.569 37.249 D+L, LL Comb Run (LL) 31.991 124.4467 97.666 43.689 27.765 D+L, LL Comb Run (LL) 31.741 124.971 33.294 62.569 37.249 D+L, LL Comb Run (LL) 31.741 124.971 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.991 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.999 124.446 108.401 54.186 27.113 D+L, LL Com	D Only	22.211	84.361	63.586	54.369	26.609	
L Only, LL Comb Run ("L") 0.154 -0.674 11.731 9.684 -0.553 L Only, LL Comb Run ("L") 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L") -3.190 25.474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL) -3.135 25.24 490 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.24 4940 18.626 10.499 L Only, LL Comb Run (L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.485 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.841 44.678 24.948 10.084 10.936 L Only, LL Comb Run (LL) 7.841 44.678 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.940 44.457 24.6279 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("LL) 22.138 84.260 71.035 82.183 35.589 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.0444.471 10.054 54 55.3993 27.166 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL) 31.991 124.446 10.915 72.205 38.888	L Only, LL Comb Run (***L)	-0.099	0.434	-3.681	17.326	10.212	
L Comb, LL Comb Run ("LL) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L") -3.190 25.474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.025 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run ("LL) 11.31 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.941 44.478 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.954 44.043 66.79 19.778 10.383 D +L, LL Comb Run (LLL) 7.954 44.204 36.679 19.778 10.383 D +L, LL Comb Run (LLL) 7.955 44.204 36.679 19.778 10.383 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 19.050 108.859 98.305 43.131 27.860 D +L, LL Comb Run ("LL) 19.042 108.627 94.302 24.52 0.564 D +L, LL Comb Run ("LL) 19.045 108.626 17.975 36.883 D +L, LL Comb Run ("LL) 18.992 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.992 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.992 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.992 109.055 94.62.618 64.820 26.564 D +L, LL Comb Run ("LL) 18.992 109.055 70.115 82.567 35.988 D +L, LL Comb Run ("LL) 18.992 109.055 70.155 67.75 59.88 D +L, LL Comb Run ("LL) 18.447 101.063 62.618 64.820 26.564 D +L, LL Comb Run ("LL) 18.447 101.063 62.618 64.3696 27.765 D +L, LL Comb Run ("LL) 31.741 124.971 93.294 62.569 37.249 D +L, LL Comb Run ("LL) 31.940 108.4723 70.656 70.155 82.57 35.988 D +L, LL Comb Run ("LL) 31.944 124.57 77.65 75.958 D +L, LL Comb Run ("LL) 31.944 124.571 93.294 62.569 37.249 D +L, LL Comb Run ("LL) 31.944 124.571 93.294 62.569 37.249 D +L, LL Comb Run (LLL) 31.944 124.310 108.401 54.186 27.113 D +L, LL Comb Run	L Only, LL Comb Run (**L*)	0.154	-0.674	11.731	9.694	-0.553	
L Only, LL Comb Run ("L") 3-190 25.474 31.350 8-393 0.839 L Only, LL Comb Run ("LL") 3-289 25.908 27.669 8.933 11.052 Only, LL Comb Run ("LL") 3-305 24.800 43.061 1.300 0.286 L Only, LL Comb Run ("LL") 3-135 25.234 39.400 18.626 10.499 L Only, LL Comb Run ("L") 11.130 18.971 -2.721 1.152 -0.115 D Only, LL Comb Run ("L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L"L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L"L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.840 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.955 44.204 36.679 19.778 10.383 D+L, LL Comb Run (LLL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("TL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("TL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.771 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run	L Only, LL Comb Run (**LL)	0.055	-0.240	8.050	27.020	9.659	
L Only, LL Comb Run ("L") - 3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL") - 3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL") - 3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L"") 11.031 19.404 -6.402 18.478 10.997 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.457 24.948 10.084 10.936 L Only, LL Comb Run (LL") 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLT) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.955 04.020 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 34.491 100.956 70.158 73.76 68.83 D+L, LL Comb Run ("LL) 34.491 100.956 70.158 73.568 D+L, LL Comb Run (LL") 34.491 100.956 70.158 73.568 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.992 124.446 104.758 72.568 35.988	L Only, LL Comb Run (*L**)	-3.190	25.474	31.350	-8.393	0.839	
L Only, LL Comb Run ("LL") -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL") -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L"") 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L"L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L"L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L"L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.841 44.879 9.111 72.937 36.362 D-L, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D-L, LL Comb Run (""L) 22.159 84.759 59.111 72.937 36.362 D-L, LL Comb Run (""L) 22.213 84.260 71.035 82.183 35.989 D-L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D-L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D-L, LL Comb Run ("LL") 19.140 108.770 105.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 101.63 62.618 54.820 25.664 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("LL") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.263 36.362 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.265 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.244 73.266 35.968 D-L, LL Comb Run ("L") 34.441 101.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.265 35.968 D-L, LL Comb Run ("L") 31.840 124.675 97.556 43.596 37.249 D-L, LL Comb Run ("L") 31.947 124.310 10.841 54.186 27.113 D-L, LL Comb Run (LLL") 31.947 124.310 10.841 54.186 27.113 D-L, LL Comb Run (LLL") 31.947 124	L Only, LL Comb Run (*L*L)	-3.289	25.908	27.669	8.933	11.052	
L Conly, LL Comb Run ("LLL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L**) 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L*L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L*L) 11.85 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L*L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*L) 7.955 44.204 36.679 10.778 10.383 D-t, LL Comb Run ("*L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("*L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("*L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*L) 19.955 10.859 99.8.055 43.131 27.860 D+L, LL Comb Run ("L*L) 19.955 10.859 99.8.305 43.131 27.860 D+L, LL Comb Run ("L*L) 19.905 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 19.040 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.6	L Only, LL Comb Run (*LL*)	-3.035	24.800	43.081	1.300	0.286	
L Only, LL Comb Run (L***) 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L**L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L**L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L**L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L**L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.941 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*) 7.951 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.94 83.290 75.204 64.110 26.051 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L) 19.1060 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (**L) 34.441 101.636 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.636 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.636 70.115 82.567 35.968 D+L, LL Comb Run (**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (**L) 31.940 108.567 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.4675 97.656 43.696 27.7	L Only, LL Comb Run (*LLL)	-3.135	25.234	39.400	18.626	10.499	
L Only, LL Comb Run (L*t.) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L*t.) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L*t.) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL.) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("*t.) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("*t.) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run ("*t.) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("L*t.) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*t.) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*t.) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("*t.) 34.447 101.663 62.618 54.820 26.564 D+L, LL Comb Run ("L*t.) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("L*t.) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.467 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.416 104.758 72.205 36.858	L Only, LL Comb Run (L***)	11.130	18.971	-2.721	1.152	-0.115	
L Only, LL Comb Run (L*L*) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L*L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL*) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (*L*) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.060 108.859 39.4.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.050 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (*L*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (*L*) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.441 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.941 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.941 124.971 93.294 62.569 37.249 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.979 124.446 104.758 72.205 36.858	L Only, LL Comb Run (L**L)	11.031	19.404	-6.402	18.478	10.097	
L Only, LL Comb Run (L*L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL*') 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.060 108.859 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 34.447 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.999 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	L Only, LL Comb Run (L*L*)	11.284	18.297	9.010	10.845	-0.668	
L Only, LL Comb Run (LL**) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L**) 34.487 101.663 62.618 54.820 26.564	L Only, LL Comb Run (L*LL)	11.185	18.730	5.329	28.171	9.544	
L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L*) 19.100 108.723 108.545 53.993 27.166 D+L, LL Comb Run (**L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.974 124.971 93.294 62.569 37.249 D+L, LL Comb Run (Lt*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	L Only, LL Comb Run (LL**)	7.940	44.445	28.628	-7.242	0.724	
L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L*) 22.243 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.481 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.979 124.446 104.758 72.205 36.858	L Only, LL Comb Run (LL*L)	7.841	44.878	24.948	10.084	10.936	
L Only, LL Comb Run (LLLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**L) 22.213 84.260 71.335 82.183 35.989 D+L, LL Comb Run (*L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L') 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL') 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.862 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.491 100.956 77.155 82.567 35.968	L Only, LL Comb Run (LLL*)	8.094	43.771	40.360	2.452	0.171	
D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L*) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 73.263 36.362 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*1) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L1**) 31.840 124.675 97.656 43.696 27.765	L Only, LL Comb Run (LLLL)	7.995	44.204	36.679	19.778	10.383	
D+L, LL Comb Run (**L*) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*L) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L*) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113	D+L, LL Comb Run (***L)	22.159	84.759	59.111	72.937	36.362	
D+L, LL Comb Run (**LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL*) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 <t< td=""><td>D+L, LL Comb Run (**L*)</td><td>22.294</td><td>83.829</td><td>75.204</td><td>64.110</td><td>26.051</td><td></td></t<>	D+L, LL Comb Run (**L*)	22.294	83.829	75.204	64.110	26.051	
D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (**LL)	22.213	84.260	71.035	82.183	35.989	
D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*L**)	19.060	108.859	98.305	43.131	27.860	
D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*L*) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*L*L)	18.992	109.053	94.061	61.991	37.310	
D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*LL*)	19.140	108.723	108.545	53.993	27.166	
D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*LLL)	19.095	108.770	105.038	71.975	36.883	
D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L***)	34.487	101.063	62.618	54.820	26.564	
D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L**L)	34.441	101.444	58.234	73.263	36.362	
D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L*L*)	34.529	100.611	74.175	64.584	26.004	
D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L*LL)	34.491	100.956	70.115	82.567	35.968	
D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LL**)	31.840	124.675	97.656	43.696	27.765	
D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LL*L)	31.741	124.971	93.294	62.569	37.249	
D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LLL*)	31.974	124.310	108.401	54.186	27.113	
Shear Stirrup Requirements	D+L, LL Comb Run (LLLL)	31.909	124.446	104.758	72.205	36.858	
	Shear Stirrup Requirements						
Between 0.00 to 3.60 ft PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stimuls spaced at 11.000 in	Between 0.00 to 3.60 ft PhiV $c/2 < V_1$	I <= PhiVo Re	a'd Vs = Min 11 F	563 use stirru	os spaced at 1	1 000 in	
Between 4.20 to 13.80 ft. Vu < PhiVc/2. Red Vs = Not Red, use stirrups spaced at 0.000 in	Between 4.20 to 13.80 ft. Vu < PhiVc	/2. Rea'd Vs =	Not Read. use s	tirrups spaced a	it 0.000 in	1.000 11	
Between 14.40 to 19.80 ft, PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 14.40 to 19.80 ft, PhiVc/2 <	Vu <= PhiVc, F	Reg'd Vs = Min 1	1.5.6.3, use stir	rups spaced at	11.000 in	
Between 20.40 to 28.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 5.000 in	Between 20.40 to 28.80 ft, PhiVc < V	'u, Req'd Vs = I	Min ^{11.5.6.3} , use	e stirrups spaced	d at 5.000 in		
Between 29.60 to 36.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 29.60 to 36.00 ft, PhiVc/2 <	Vu <= PhiVc, F	Req'd Vs = Min 1	1.5.6.3, use stir	rups spaced at	11.000 in	
Between 36.80 to 44.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	Between 36.80 to 44.00 ft, Vu < PhiV	/c/2, Req'd Vs =					
Between 44.80 to 50.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in							
Between 51.20 to 56.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 8.000 in							
Between 57.20 to 61.20 tt, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 57.20 to 61.20 ft, PhiVc/2 <	Vu <= PhiVc, F	Req'd Vs = Min 1	1.5.6.3, use stir	rups spaced at	11.000 in	
Between billou to bollou TI, Vu < PhilVc/2, Regid Vs = Not Regid, use stirrups spaced at U.000 in	Between 61.60 to 68.80 ft, Vu < PhiV	c/2, Req'd Vs =	Not Reqd, use	stirrups spaced	at 0.000 in	11 000 :	
Between 53.20 to 71.50 tt, PrivC/2 < Vu <= PrivC, Keg a Vs = Min 11.5.5.5, USS stirrups spaced at 11.000 in	Between 69.20 to 71.60 π, PhiVc/2 < Potween 72.00 to 72.60 ft $PhiVc < 10^{-1}$	vu <= PniVC, H	xeq a vs = Min 1	1.5.0.3, USE Still	rups spaced at	11.000 IN	
Detween 72.00 to 72.00 ti, $r = 10^{10} c/2 < V_U < = Det(0, E) C = Min (11.5.0.5) use sum ups spaced at (12.000 m)Between 73.00 to 70.80 ft Det/(0.2) C = Det/(0.2) C = Min (11.5.6.3) use sum operand at (11.000 m)$	Detween 12.00 to 12.00 it, PNIVC < V	u, rtequivs = l	viii 11.5.0.5, USE	surrups spaced	μαι 12.000 IN		
	Retween 73 20 to 79 80 ft $\frac{\text{Dhi}}{2}$	$V_{11} \leq Phi V_{2}$	Rad'd V = Min 1	1563 use etir	rune enared at	11 000 in	

Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)	
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	-
MAXimum BENDING Envel	ope					
Span # 1	. 1	23.400	-415.20	646.99	0.64	
Span # 2	2	24.000	-463.37	576.91	0.80	

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Gir	der G2 (gridline	D)					
Load Combination		Location (ft)	Be	ending Stress Results	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	85.800	121.61	474.11	0.26		
Overall Maximum	Deflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L	*L*)	1	0.0426	10.800	D+L, LL Comb Run (*L*L)	-0.0155	20.400
D+L, LL Comb Run (*	L*L)	2	0.2161	17.600	D+L, LL Comb Run (*L*L)	-0.0085	32.800
D+L, LL Comb Run (*	L*L)	3	0.0089	17.200	D+L, LL Comb Run (*L*L)	-0.0315	7.200
D+L, LL Comb Run (*	L*L)	4	0.0744	13.200		0.0000	7.200

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Concrete Beam

Printed: 15 SEP 2011, 12:52PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G2 (gridline D)

Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (Assembly El Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL)

Load for Span Number 3

Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 24.0 ft, (Corridor LL)

Uniform Load : L = 0.0450 k/ft, Extent = 8.0 -->> 16.0 ft, Tributary Width = 1.0 ft, (Office LL)

Load for Span Number 4

Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (Office LL)

Lic. # : KW-06003381

Girder G2 (gridline D) Description :

DESIGN SUMMARY				Desigi	ו OK	
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination 20D+0.50Lr+1.60L+1.60 Location of maximum on span Span # where maximum occurs	0.894 : 1 Typical Section -392.60 k-ft 439.06 k-ft 0H, LL Comb Run (*LL*) 0.000ft Span # 3	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.155 in -0.072 in 0.216 in -0.032 in	Ratio = Ratio = Ratio = Ratio =	2481 5354 1776 6086	

Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 34.517 129.909 112.925 76.522 37.528 D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
Overall MAXimum 34.517 129.909 112.925 76.522 37.528 D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
L Only, LL Comb Run (**L*) 0.108 -0.474 9.797 3.513 -0.296
L Only, LL Comb Run (**LL) 0.009 -0.041 6.117 20.839 9.916
L Only, LL Comb Run (*L**) -3.774 30.144 37.097 -9.932 0.993
L Only, LL Comb Run (*L*L) -3.873 30.578 33.416 7.394 11.205
L Only, LL Comb Run (*LL*) -3.666 29.670 46.894 -6.420 0.697
L Only, LL Comb Run (*LLL) -3.765 30.104 43.213 10.906 10.909
L Only, LL Comb Run (L***) 11.130 18.971 -2.721 1.152 -0.115
L Only, LL Comb Run (L**L) 11.031 19.404 -6.402 18.478 10.097
L Only, LL Comb Run (L*L*) 11.238 18.496 7.076 4.664 -0.411
L Only, LL Comb Run (L*LL) 11.139 18.930 3.395 21.990 9.801
L Only, LL Comb Run (LL**) 7.356 49.115 34.376 -8.780 0.878
L Only, LL Comb Run (LL*L) 7.257 49.549 30.695 8.546 11.090
L Only, LL Comb Run (LLL*) 7.464 48.640 44.173 -5.268 0.582
L Only, LL Comb Run (LLLL) 7.365 49.074 40.492 12.058 10.794
D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362
D+L, LL Comb Run (**L*) 22.263 83.999 73.294 57.918 26.309
D+L, LL Comb Run (**LL) 22.196 84.412 69.017 76.172 36.179
D+L, LL Comb Run (*L**) 18.191 114.026 103.990 41.343 28.113
D+L, LL Comb Run (*L*L) 18.140 114.157 99.805 60.226 37.528
D+L, LL Comb Run (*LL*) 18.258 113.845 112.925 45.582 27.703
D+L, LL Comb Run (*LLL) 18.228 113.884 109.103 64.048 37.240
D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564
D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362
D+L, LL Comb Run (L*L*) 34.517 100.745 72.293 58.382 26.263
D+L, LL Comb Run (L*LL) 34.476 101.102 68.122 76.522 36.170
D+L, LL Comb Run (LL**) 30.957 129.726 103.781 41.580 28.037
D+L, LL Comb Run (LL*L) 30.883 129.909 99.567 60.443 37.470
D+L, LL Comb Run (LLL*) 31.029 129.570 112.628 45.862 27.638
D+L, LL Comb Run (LLLL) 30.985 129.618 108.922 64.170 37.225
Shear Stirrup Requirements
Between 0.00 to 3.60 ft, PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in
Between 4.20 to 13.80 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in
Between 14.40 to 19.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in
Between 20.40 to 29.60 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 4.000 in
Between 30.40 to 36.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Between 44.80 to 49.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 50.40 to 56.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 6.000 in Between 57.20 to 61.20 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 61.60 to 69.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 70.00 to 71.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 72.00 to 72.00 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 12.000 in Between 72.60 to 79.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 80.40 to 90.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envel					
Span # 1	· 1	23.400	-437.09	646.99	0.68
Span # 2	2	24.000	-485.82	576.91	0.84

Dsgnr: Project Desc.:

Title : Cupertino City Hall

Project Notes :

Licensee : AHEARN & KNOX, INC

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Gir	der G2 (gridline	D)					
Load Combination		Location (ft)	Be	ending Stress Results	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	85.800	121.61	474.11	0.26		
Overall Maximum	Deflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L	*L*)	1	0.0426	10.800	D+L, LL Comb Run (*L*L)	-0.0155	20.400
D+L, LL Comb Run (*	L*L)	2	0.2161	17.600	D+L, LL Comb Run (*L*L)	-0.0085	32.800
D+L, LL Comb Run (*	L*L)	3	0.0089	17.200	D+L, LL Comb Run (*L*L)	-0.0315	7.200
D+L, LL Comb Run (*	L*L)	4	0.0744	13.200		0.0000	7.200

Concrete Beam

Title: Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Lic. # : KW-06003381 Description : Girder G3 (gridline E) **Material Properties** Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05 3.50 ksi 0.90 fc $fr = fc^{1/2} * 7.50$ 443.71 psi = 0.750 Shear : Ψ Density 145.0 pcf = 0.850 β_1 λ LtWt Factor = 1.0 3,372.17 ksi Elastic Modulus = Fy - Stirrups 40.0 ksi 29,000.0 ksi E - Stirrups = fy - Main Rebar = 40.0 ksi # 3 Stirrup Bar Size # = 29.000.0 ksi E - Main Rebar = 2 Number of Resisting Legs Per Stirrup = Load Combination 2009 IBC & ASCE 7-05 64 ir 456 16" w x 36" h Span=24.0 ft 16" w x 36" h Span=24.0 ft 16" w x 36" h Span=24.0 ft **Cross Section & Reinforcing Details** Tee Section, Stem Width = 16.0 in, Total Height = 36.0 in, Top Flange Width = 64.0 in, Flange Thickness = 3.0 in Span #1 Reinforcing.... 1-#8 at 3.0 in from Bottom, from 0.0 to 19.0 ft in this span 2-#11 at 3.0 in from Bottom, from 0.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 8.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Top, from 18.0 to 24.0 ft in this span Span #2 Reinforcing.... 2-#11 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span 1-#8 at 3.0 in from Bottom, from 2.0 to 22.0 ft in this span 2-#11 at 3.0 in from Bottom. from 18.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top. from 0.0 to 16.0 ft in this span 1-#8 at 3.0 in from Top, from 0.0 to 6.0 ft in this span 2-#11 at 3.0 in from Top, from 8.0 to 24.0 ft in this span Span #3 Reinforcing.... 2-#11 at 3.0 in from Bottom, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Bottom, from 4.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Top, from 0.0 to 6.0 ft in this span Service loads entered. Load Factors will be applied for calculations. Applied Loads Loads on all spans... D = 0.10 Uniform Load on ALL spans : D = 0.10 ksf, Tributary Width = 24.0 ft Load for Span Number 1 Uniform Load : L = 0.0640 ksf, Tributary Width = 12.0 ft, (corridor LL) Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL) Uniform Load : D = 0.0380 ksf, Extent = 0.0 -->> 14.0 ft, Tributary Width = 12.0 ft, (addl slab DL) Point Load : D = 2.60 k @ 14.0 ft Load for Span Number 2 Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 12.0 ft, (corridor LL) Uniform Load : L = 0.0420 ksf, Extent = 16.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (office LL) Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 12.0 ft, (office LL) Load for Span Number 3 Uniform Load : L = 0.0420 ksf, Tributary Width = 24.0 ft, (office LL) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.997:1 Maximum Deflection Max Downward L+Lr+S Deflection 0.043 in Ratio = Section used for this span Typical Section Max Upward L+Lr+S Deflection -0.041 in Ratio = Mu : Applied 118.47 k-ft Max Downward Total Deflection 0.081 in Ratio = Mn * Phi : Allowable 118.80 k-ft Max Upward Total Deflection -0.017 in Ratio = Load Combinatiefh.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*L*) 12.200ft Location of maximum on span Span # where maximum occurs Span # 2

Printed: 15 SEP 2011, 12:52PM

μ

6648

6969

3572

16621

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Licensee : AHEARN & KNOX, INC

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Girder G3 (gridline E)

Vertical Reactions - Unfact	tored		5	Support notation : Far left is #	<i>‡</i> 1	
Load Combination	Support 1	Support 2	Support 3	Support 4		
Overall MAXimum	40.666	103.500	92.137	34.360		
D Only	27.966	68.266	62.342	23.210		
L Only, LL Comb Run (**L)	0.403	-2.419	15.725	10.483		
L Only, LL Comb Run (*L*)	-1.470	16.434	14.870	-1.418		
L Only, LL Comb Run (*LL)	-1.067	14.015	30.595	9.065		
L Only, LL Comb Run (L**)	13.229	19.843	-3.053	0.509		
L Only, LL Comb Run (L*L)	13.632	17.424	12.672	10.992		
L Only, LL Comb Run (LL*)	11.758	36.278	11.817	-0.909		
L Only, LL Comb Run (LLL)	12.162	33.858	27.542	9.574		
D+L, LL Comb Run (**L)	28.375	65.818	78.111	33.673		
D+L, LL Comb Run (*L*)	26.550	84.579	77.292	21.778		
D+L, LL Comb Run (*LL)	26.815	82.807	92.137	32.632		
D+L, LL Comb Run (L**)	40.558	89.547	58.323	23.883		
D+L, LL Comb Run (L*L)	40.666	87.714	73.764	34.360		
D+L, LL Comb Run (LL*)	40.193	103.500	74.841	22.194		
D+L, LL Comb Run (LLL)	40.274	101.926	89.845	32.876		

Shear Stirrup Requirements

Between 0.00 to 5.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 5.60 to 13.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 14.00 to 20.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 20.20 to 25.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 9.000 in Between 26.00 to 31.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 31.80 to 40.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 40.80 to 46.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 46.80 to 49.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 56.80 to 56.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 56.80 to 67.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 67.60 to 71.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	ocation (ft) Bending Stress Results (k-ft)					
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio			
MAXimum BENDING Enve	lope							
Span # 1	. 1	23.800	-304.88	367.89	0.83			
Span # 2	2	36.200	118.47	118.80	1.00			
Span # 3	3	48.000	-277.39	367.89	0.75			
+1.40D								
Span # 1	1	23.800	-205.60	367.89	0.56			
Span # 2	2	47.800	-180.07	296.54	0.61			
Span # 3	3	48.000	-187.83	367.89	0.51			
+1.20D+0.50Lr+1.60L+1.60	+1.20D+0.50Lr+1.60L+1.60H, LL Comb							
Span # 1	1	23.800	-160.88	367.89	0.44			
Span # 2	2	47.800	-215.64	296.54	0.73			
Span # 3	3	48.000	-222.93	367.89	0.61			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	23.800	-232.22	367.89	0.63			
Span # 2	2	36.200	118.47	118.80	1.00			
Span # 3	3	48.000	-215.46	367.89	0.59			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	23.800	-216.87	367.89	0.59			
Span # 2	2	47.800	-265.82	296.54	0.90			
Span # 3	3	48.000	-277.39	367.89	0.75			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	10.000	274.14	399.60	0.69			
Span # 2	2	24.000	-263.59	367.89	0.72			
Span # 3	3	48.000	-141.46	367.89	0.38			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	10.200	280.63	399.60	0.70			
Span # 2	2	24.000	-248.11	367.89	0.67			
Span # 3	3	61.800	229.76	399.60	0.57			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	23.800	-304.88	367.89	0.83			
Span # 2	2	24.000	-320.05	367.89	0.87			
Span # 3	3	48.000	-195.92	367.89	0.53			
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb							
Span # 1	1	23.800	-289.52	367.89	0.79			
Span # 2	2	47.800	-247.10	296.54	0.83			
Concrete Beam

Lic. # : KW-06003381 Description : Girder G3 (gridline E)

Printed: 15 SEP 2011, 12:52PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Load Combination		Location (ft)	B	ending Stress Result	ts (k-ft)	_		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio			
Span # 3	3	48.000	-257.85	367.89	0.70			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	23.800	-160.88	367.89	0.44			
Span # 2	2	47.800	-215.64	296.54	0.73			
Span # 3	3	48.000	-222.93	367.89	0.61			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	23.800	-232.22	367.89	0.63			
Span # 2	2	36.200	118.47	118.80	1.00			
Span # 3	3	48.000	-215.46	367.89	0.59			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	23.800	-216.87	367.89	0.59			
Span # 2	2	47.800	-265.82	296.54	0.90			
Span # 3	3	48.000	-277.39	367.89	0.75			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	10.000	274.14	399.60	0.69			
Span # 2	2	24.000	-263.59	367.89	0.72			
Span # 3	3	48.000	-141.46	367.89	0.38			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R	40.000						
Span # 1	1	10.200	280.63	399.60	0.70			
Span # 2	2	24.000	-248.11	367.89	0.67			
Span # 3	3	61.800	229.76	399.60	0.57			
+1.20D+1.60L+0.50S+1.60H,		02.000	204.00	007.00	0.00			
Span # 1	1	23.800	-304.88	367.89	0.83			
Span # 2	2	24.000	-320.05	367.89	0.87			
Span # 3	J Comb D	48.000	-195.92	307.89	0.53			
+1.20D+1.60L+0.50S+1.60H,		22 000	200 52	267.90	0.70			
Span # 2	1 2	23.000	-209.32	307.09 206.54	0.79			
Span # 3	2	47.000	-247.10	290.04	0.03			
+1.20D+1.60Ir+0.50I LL Cor	mh Dun /*	40.000	-237.03	507.09	0.70			
Span # 1		23 800	_171 /3	367 80	0.47			
Span # 2	2	23.000	-171.45	206.54	0.47			
Span # 3	2	47.000	-173.30	250.54	0.59			
+1.20D+1.60Ir+0.50I LL Cor	mh Run (*	40.000	-100.00	507.05	0.49			
Snan # 1	1	23 800	-193 73	367.89	0.53			
Span # 2	2	47 800	-170.03	296 54	0.00			
Span # 3	3	48 000	-178.02	367.89	0.48			
+1 20D+1 60l r+0 50l 11 Cor	mb Run (*	10.000	110.02	001.00	0.10			
Span # 1	1	23.800	-188.93	367.89	0.51			
Span # 2	2	47.800	-189.18	296.54	0.64			
Span # 3	3	48.000	-197.37	367.89	0.54			
+1.20D+1.60Lr+0.50L, LL Cor	mb Run (L							
Span # 1	1	23.800	-198.93	367.89	0.54			
Span # 2	2	24.000	-209.86	367.89	0.57			
Span # 3	3	48.000	-154.89	367.89	0.42			
+1.20D+1.60Lr+0.50L, LL Cor	mb Run (L							
Span # 1	1	23.800	-194.14	367.89	0.53			
Span # 2	2	47.800	-167.65	296.54	0.57			
Span # 3	3	48.000	-174.25	367.89	0.47			
+1.20D+1.60Lr+0.50L, LL Cor	mb Run (L							
Span # 1	1	23.800	-216.43	367.89	0.59			
Span # 2	2	24.000	-227.51	367.89	0.62			
Span # 3	3	48.000	-171.91	367.89	0.47			
+1.20D+1.60Lr+0.50L, LL Cor	mb Run (L							
Span # 1	1	23.800	-211.63	367.89	0.58			
Span # 2	2	47.800	-183.33	296.54	0.62			
Span # 3	3	48.000	-191.27	367.89	0.52			
Overall Maximum De	flections -	- Unfactor	ed Loads					
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combina	ation	Max. "+" Defl	Location in Span
D+L LL Comb Run (L*L)		1	0.0806	10 200	D+L LL Cou	mb Run (I *I)	-0 0029	24 600
D+L. LL Comb Run (I *I)		2	0.0027	24.600	D+L. LL Coi	mb Run (L*L)	-0.0173	9.000
D+L, LL Comb Run (L*L)		3	0.0519	12.600	,	x /	0.0000	9.000

Description :

Concrete Slender Wall

Existing 6" wall

Project Notes :

Printed: 5 OCT 2011 12:38DM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ecb
ENERCALC, INC. 1983-2011, Build:6.11.9.30, Ver:6.11.8.1
Licensee : AHEARN & KNOX, INC

General Information		(Calculati	ions per AC	l 318-08 Sec 14.8, IBC	2009, CBC	2010, ASCE 7-0
	3.50 ksi Wall 40.0 ksi Reba 372.17 ksi Reba 1.0 Lowe 295.80 psi B 0.60 B 0.060 144.0 pcf 12.0 in Intervention	Thickness ar at wall center ar "d" distance er Level Rebar Bar Size Bar Spacing	#	6.0 in 3.0 in 4 12.0 in	Temp Diff across thickne Min Allow Out-of-Plane I Minimum Vertical Steel Using Stiffness Reductic	ess = Defl Ratio = % = n Factor per	deg F L / 150.0 0.0020 ACI R.10.12.3
One-Story Wall Dimensions							
A Clear Height = B Parapet height = Wall Support Condition Top & Botto	12.0 ft ft om Pinned	B 			Roof Attachment Floor Attachment		
Vertical Loads							
Vertical Uniform Loads (Applied per Ledger Load Eccentricity Concentric Load	er foot of Strip Width) in	<u>DL : Dead Lo</u> 0.8	<u>ad</u> 380	<u>Lr : Root Live</u> 0.2	Load <u>Lf : Floor Live</u> 2560	<u>.oad S</u>	<u>s : Snow Load</u> k/ft k/ft
Full area WIND load	15.0 psf	Wall Weight Sei	smic Load	Input Method :	Direct entry c	f Lateral W	/all Weight
Fp 1.0 =	34.0 psf	Seismic Wall La	teral Load		34.	0 psf	-

DESIGN SUMMARY

Results reported for "Strip Width" of 12.0 in

	Governing Load Combination	Actual Values	S	Allowab	le Values
PASS	Moment Capacity Check +1.050D+1.280Lr+1.40E	Maximum Bending Max Mu	Stress Ratio = (0.8592 k-ft	0.420 Phi * Mn	2.046 k-ft
PASS	Service Deflection Check D + L + S + E/1.4	Min. Defl. Ratio Max. Deflection	9,242.33 0.01558 in	Max Allow Ratio Max. Allow. Defl.	150.0 0.960 in
PASS	Axial Load Check +1.40D at 5.20 to 5.60	Max Pu / Ag	26.631 psi	0.06 * fc	210.0 psi
PASS	Reinforcing Limit Check +1.40D	Controlling As/bd	0.005556	As/bd = 0.50 rho bal	0.02598
FAIL	Minimum Moment Check	Mcracking	1.775 k-ft	Minimum Phi Mn	1.733 k-ft
	+1.40D	Maximum Reactions	for Load Comb	pination	
		Top Horizontal	E Only		0.2040 k
		Base Horizonta	al E Only		0.2040 k
		Vertical Reaction	on D+L+Lr		2.0 k

Title : Cupertino City Hall Dsgnr: Project Desc.:

Printed: 5 OCT 2011, 12:38PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.30, Ver:6.11.8.1

Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Slender Wall

Lic. # : KW-06003381

Description : Existing 6" wall

Design Maximum Combinations - Moments

	Axial Load			Moment Values						0.6 *
Load Combination	Pu k	0.06*f'c*b*t k	Mcr k-ft	Mu k-ft	Phi	Phi Mn k-ft	As in^2	As Eff in^2	As Ratio	rho bal
+1.40D at 5.20 to 5.60	1.917	15.120	1.77	0.00	0.88	2.08	0.200	0.248	0.0056	0.0260
+1.050D+1.280Lr+1.40E at 5.60 to 6.00	1.736	15.120	1.77	0.86	0.88	2.05	0.200	0.243	0.0056	0.0260
+0.90D+1.10E at 5.60 to 6.00	1.207	15.120	1.77	0.67	0.89	1.96	0.200	0.230	0.0056	0.0260

Design Maximum Combinations - Deflections

	Axial Load	Mom	ent Values		Stiffness		Deflec	ctions
Load Combination	Pu	Mcr	Mactual	I gross	I cracked	I effective	Deflection	Defl. Ratio
	k	k-ft	k-ft	in^4	in^4	in^4	in	
D + L + Lr at 5.60 to 6.00	1.597	1.77	0.00	216.00	13.02	216.000	0.000	0.0
D + L + W at 5.60 to 6.00	1.341	1.77	0.27	216.00	12.73	216.000	0.010	14,963.8
D + L + W + S/2 at 5.60 to 6.00	1.341	1.77	0.27	216.00	12.73	216.000	0.010	14,963.8
D + L + S + W/2 at 5.60 to 6.00	1.341	1.77	0.14	216.00	12.73	216.000	0.005	29,927.6
D + L + S + E/1.4 at 5.60 to 6.00	1.341	1.77	0.44	216.00	12.73	216.000	0.016	9,242.3
D + 0.5(L+Lr) + 0.7W at 5.60 to 6.00	1.469	1.77	0.19	216.00	12.88	216.000	0.007	21,368.9
D + 0.5(L+Lr) + 0.7E at 5.60 to 6.00	1.469	1.77	0.43	216.00	12.88	216.000	0.015	9,427.5

Reactions - Vertical & Horizontal

Load Combination	Base Horizontal	Top Horizontal	Vertical @ Wall Base
D Only	0.0 k	0.00 k	1.744 k
S Only	0.0 k	0.00 k	0.000 k
W Only	0.1 k	0.09 k	0.000 k
E Only	0.2 k	0.20 k	0.000 k
D + L + Lr	0.0 k	0.00 k	2.000 k
D + L + S	0.0 k	0.00 k	1.744 k
D + L + W + S/2	0.1 k	0.09 k	1.744 k
D + L + S + W/2	0.0 k	0.05 k	1.744 k
D + L + S + E/1.4	0.1 k	0.15 k	1.744 k

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line 1 & 5

Input Data:						
Total Lateral	Load:	104330	lbs.			
Overall Collect	ctor Length:	121	ft.			
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*	
1	7	1	6			
2	7	113	7			
3			8			
4			9			
5			10			
Begin location is distance from left end of overall collector length to left end of shear wall.						

Collector Load =	862.2	plf
Shear Wall Load =	7452.1	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No. E	Begin (lbs.)	End (lbs.)
1	862	-45267	6	0	0
2	45267	-862	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line A

Input Data: Total Lateral Overall Collec	Load: ctor Length:	104330 97	lbs. ft.			
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*	
1	8.5	25	6			
2	9.5	49	7			
3			8			
4			9			
5			10			
Begin location is distance from left end of overall collector length to left end of shear wall.						

Collector Load =	1075.6	plf
Shear Wall Load =	5796.1	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No.	Begin (lbs.)	End (lbs.)
1	26889	-13235	6	0	0
2	3436	-41409	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PL-02 COLLECTOR STRESS ANALYSIS Designation: Wall Line F

Input Data: Total Lateral Overall Collec	Load: ctor Length:	104330 97	lbs. ft.		
Wall No.	Length (ft)	Begin (ft.)*	Wall No.	Length (ft)	Begin (ft.)*
1	13	25	6		
2	7	89	7		
3			8		
4			9		
5			10		
* Begin location i	s distance from le	eft end of over	all collector length to left	end of shear w	all.

Collector Load =	1075.6	plf
Shear Wall Load =	5216.5	plf

Collector Loads:

Wall No.	Begin (lbs.)	End (lbs.)	Wall No.	Begin (lbs.)	End (lbs.)
1	26889	-26943	6	0	0
2	27911	-1076	7	0	0
3	0	0	8	0	0
4	0	0	9	0	0
5	0	0	10	0	0

Program: PC-03 CONCRETE SHEAR WALL Designation: SW1.2.1

1998 CBC (1985 UBC Sim.)

_

7 ft.		Vertical Lo	oads, kips:	(Special = ass	embly, > 100 ps	or garage)	
6 in.		Distance me	asured from le	eft end of wall,	ft.		
12 ft.		Load No.	Dead, kips	Live, kips	Distance	Special (Y/	N)
		1	5.63		3.5		
4 (3-9))	2	6.3		3.5		
12 in.		3					
4 (3-9))	4					
12 in.		5					
S S/D							
			Lateral Loa	ads			
<mark>8</mark> (3-10	0)		Load No.	Force, kips	Height, ft.		
2			1	52.16	12		
<mark>8</mark> (3-10	0)		2	1.3	6		
2			3				
4 in.			4				
(3-6)) if req	uired.	5				
			6				
3.5 ksi 40 ksi		Note: Pro	gram does	not calculat	e wall self w	eight!	
Reinforcing Ratic al Reinforcing Ra foring Spacing: einforing Spacing cing Check: ting Check: heck:	o: atio: g:	0.0025 0.0025 18 18 Double Re Hooked S OK	Actual: Actual: Actual: Actual: einforcing C hear Reinfo	0.0028 0.0028 12 12 Curtain Req orcing IS Re	OK OK OK OK uired equired		
	φ=	0.85					
kips	$\phi V_n =$	107.6	kips	OK		DCR =	0.70
	+ -	0 00					
ft king	-φ - Μ	264 1	ft king	Overetrees	od		2 4 4
п-кірз с	φινι _n –	304.1	n-kips	Oversitess	eu!	DCR -	2.44
ft-kips o	φM _n =	364.1	ft-kips	Overstress	ed!	DCR =	2.44
<u>x:</u> puired: YES mber Length = mber Thickness = mber Steel = = of Hoop Ties Shall Shall Be Spaced s Shall Be Confir pplices Shall Be S	= II Not E 1 12 in. hed By Spaced	12.6 9.0 0.6 1.6 0.0 Exceed 3 . o.c. Maxi Cross Tie I At 4 in. o	in. sq.in. sq.in. in. mum o Or Hoop (c. Maximun	Minimum N Supplied N Corner m	Number Of B lumber Of Ba	ars = 4 ars = 2	
	7ft.6in.12ft.12in.4 $(3-9)$ 12in.4 $(3-9)$ 12in.SS/D8 $(3-1)$ 2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.2 $(3-1)$ 4in.(3-6)3.5ksi40ksiReinforcing Ratiocing Check:cing Check:cing Check:cing Check:cing Check:cing Check:check:kipsft-kipsft-kips (2) wiber Length =mber Steel =nber Steel ==Of Hoop Ties Shall Be SpacedShall Be SpacedSplices Shall Be S	7ft.6in.12ft.4 $(3-9)$ 12in.4 $(3-9)$ 12in.SS/D8 $(3-10)$ 2in.3.5ksi40isi3.5ksi40ksiReinforcing Ratio:foring Spacing:einforing Spacing:einforing Spacing:cing Check:check:check: $\phi =$ kips $\phi V_n =$ $\phi =$ ft-kips $\phi M_n =$ ft-kips $\phi H_n =$ ft-kips ϕH_n	7ft.Vertical Lo6in.Distance me12ft.Load No.4 $(3-9)$ 212in.34 $(3-9)$ 412in.5SS/DS/D8 $(3-10)$ 28 $(3-10)$ 24in.55S/DS/D8 $(3-10)$ 24in.55S/D8 $(3-10)$ 2in.4in. $(3-6)$ if required.3.5ksi40ksiNote: ProgReinforcing Ratio: 0.0025foring Spacing:18einforing Spacing:18cing Check:Double Reising Check:bineck:OK $\phi = 0.85$ kips $\phi V_n = 107.6$ $\phi = 0.88$ ft-kips $\phi M_n = 364.1$ Simber Length = 12.6ember Thickness = 9.0ember Steel = 0.6mber Steel = 0.6mber Steel = 1.6= 0.0of Hoop Ties Shall Not Exceed 3Shall Be Spaced 12 in. o.c. Maxiis Shall Be Confined By Cross Tieoplices Shall Be Spaced At 4 in. o.	7ft.Vertical Loads, kips: Distance measured from la Load No. Dead, kips:12ft.Load No. Dead, kips:15.634(3-9)434(3-9)434(3-9)4312in.55/D8(3-10)218(3-10)234in.3.5ksi40ksi10.66) if required.3.5ksi40ksi80.00253.5ksi40ksi80.002518Actual: cing Check:190.002518Actual: cing Check:190.002510107.610107.611107.612107.613107.61410.515107.6169.017107.618107.619107.61010.61010.61010.61110.61210.01410.61510.11610.11710.61810.11910.61910.61910.61910.61910.61010.61010.610<	7ft.Vertical Loads, kips: (Special = ass6in.Distance measured from left end of wall,12ft.Load No.Dead, kipsLive, kips15.6315.6314(3-9)26.3112in.51526.31515151526.31515151526.31518(3-10)21.33215154in.413.5ksiNote: Program does not calculat3.5ksiNote: Program does not calculatal Reinforcing Ratio:0.0025Actual:0.0028foring Spacing:18Actual:12cing Check:Double Reinforcing Curtain Reqbing Check:Double Reinforcing Curtain Reqcing Check:Double Reinforcing Curtain Reqbing Check:OK $\phi = 0.85$ kips $\phi V_n = 107.6$ kips $\phi M_n = 364.1$ ft-kips <td>7ft.Vertical Loads, kips: (Special = assembly, > 100 pc6in.Distance measured from left end of wall, ft.12ft.Load No.Dead, kips4(3-9)15.633.512in.314(3-9)414(3-9)4151518(3-10)21.32in.518(3-10)21.34in.413.5ksiSince Program does not calculate wall self w4in.613.5ksiNote: Program does not calculate wall self w80.0025Actual:0.002840ksiNote: Program does not calculate wall self w8condent self self self self self self self self</td> <td>7ft.Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft.12115.633.54(3-9)15.633.543.926.33.543114(3-9)26.33.5412in.31512in.152.16128(3-10)Lateral Loads1152.161221.3611121.361121.361121.36121.361311141121.3633141121.3633141121.3633141121.363314115114115114115114151141511611010.025111212181319</td>	7ft.Vertical Loads, kips: (Special = assembly, > 100 pc6in.Distance measured from left end of wall, ft.12ft.Load No.Dead, kips4(3-9)15.633.512in.314(3-9)414(3-9)4151518(3-10)21.32in.518(3-10)21.34in.413.5ksiSince Program does not calculate wall self w4in.613.5ksiNote: Program does not calculate wall self w80.0025Actual:0.002840ksiNote: Program does not calculate wall self w8condent self self self self self self self self	7ft.Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft.12115.633.54(3-9)15.633.543.926.33.543114(3-9)26.33.5412in.31512in.152.16128(3-10)Lateral Loads1152.161221.3611121.361121.361121.36121.361311141121.3633141121.3633141121.3633141121.363314115114115114115114151141511611010.025111212181319

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.1

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butui			
Wall Length	8.5	ft.	Vertic
Wall Thickness	6	in.	Distand
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		-	
Left End Bar Size	9	(3-10)	
Number of Bars	1		
Right End Bar Size	9	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
		-	

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	6.83		4.25	
2	7.7		4.25	
3				
4				
5				

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	47.12	12
2	1.6	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wal	II Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wal	ll Horizon	tal Reinforci	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Ver	rtical Reir	nforing Space	ing:	18	Actual:	12	OK			
Maximum Ho	rizontal R	einforing Sp	bacing:	18	Actual:	12	OK			
Double Curtai	in Reinfo	rcing Check	:	Single Re	einforcing C	urtain Allov	wed			
Hooked Shea	r Reinfor	cing Check:	I	Hooked S	Shear Reinf	orcing IS R	Required			
Maximum Axi	al Load C	Check:	(OK						
Shear Check:			φ =	0.85						
V _u =	68.2	kips	φV _n =	120.1	kips	OK		DCR =	=	0.57
Bending Check	<u>:</u>		φ =	0.88						
M _u left =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
M _u right =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
Boundary Mem	ber Chec	<u>k:</u>								
Boundary Me	mber Red	quired:	YES							
Minimum Bou	Indary Me	ember Lengt	th =	15.3	in.					
Minimum Bou	Indary Me	ember Thick	ness =	9.0	in.					
Minimum Bou	Indary Me	ember Steel	=	0.7	sq.in.	Minimum	Number	Of Bars =	4	
Actual Bour	ndary Me	mber Steel =	=	1.0	sq.in.	Supplied	Number	Of Bars =	1	
Maximum Tie	Spacing	=		0.0	in.					
Length/Wid	th Ratio (Of Hoop Ties	s Shall Not E	xceed 3						
Cross Ties	Or Hoops	Shall Be S	paced 12 in.	o.c. Max	imum					
Alternate Ve	ertical Ba	rs Shall Be	Confined By	Cross Ti	e Or Hoop (Corner				
Ties At Vert	tical Bar S	Splices Shal	I Be Spaced	At 4 in. c	o.c. Maximu	m				
Horizontal Wa	all Reinfo	rcing Shall E	Be Hooked A	t Bounda	iry Edge					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.2

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butur	-	-	
Wall Length	9.5	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
			1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
Left End Bar Size	10	(3-10)	
Number of Bars	1		
Right End Bar Size	10	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

		,			
Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
1	7.64		4.75		
2	8.6		4.75		
3					
4					
5					

Lateral Loads Load No. Force, kips Height, ft.						
1	57.21	12				
2	1.8	6				
3						
4						
5						
6						

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wall	Vertical	Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK			
Minimum Wall	Horizon	tal Reinforcir	ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Ver	tical Reir	nforing Spaci	ng:	18	Actual:	12	OK			
Maximum Hor	izontal R	einforing Spa	acing:	18	Actual:	12	OK			
Double Curtai	n Reinfoi	cing Check:		Double R	Reinforcing (Curtain Rec	quired			
Hooked Shear	Reinfor	cing Check:		Hooked S	Shear Reinf	orcing IS R	lequired			
Maximum Axia	al Load C	neck:		OK						
Shear Check:			φ=	0.85						
V _u =	82.6	kips	$\phi V_n =$	134.2	kips	OK		DCR =	=	0.62
Bending Check:			φ =	0.88						
M _u left =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	-	2.40
M _u right =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	=	2.40
Boundary Memb	per Chec	<u>k:</u>								
Boundary Mer	nber Red	quired:	YES							
Minimum Bou	ndary Me	ember Length	ן =	17.1	in.					
Minimum Bou	ndary Me	ember Thickr	ness =	9.0	in.					
Minimum Bou	ndary Me	ember Steel =	=	0.8	sq.in.	Minimum	Number	Of Bars =	4	
Actual Boun	dary Mei	mber Steel =		1.3	sq.in.	Supplied I	Number (Of Bars =	1	
Maximum Lie	Spacing	=		0.0	in.					
Length/Widt	n Ratio (DT HOOP TIES	Shall Not E	xceed 3	•					
	Jr Hoops	s Shall Be Sp	aced 12 In.	O.C. Max	imum • Or Lleer (
Alternate ve	entical Ba	rs Snall Be C	De Cressed		e Or Hoop (Jorner				
	ICAI Bar S	Splices Shall	Be Spaced	AL4 IN. C	D.C. IVIAXIMU	[[]				
	ii Reinto	icing Shall B	е поокеа А	r Bonnga	iiy Euge					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.1

Input Data:

mpul Dala.	-	_	
Wall Length	13	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		_	
Left End Bar Size	8	(3-10)	
Number of Bars	2		
Right End Bar Size	8	(3-10)	
Number of Bars	2		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
Concrete Strength, f'c	3.5	ksi	
Reinforcing Yield, Fy	40	ksi	Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	10.45		6.5	
2	11.7		6.5	
3				
4				
5				

Lateral Loads Load No. Force, kips Height, ft.						
1	77.32	12				
2	2.5	6				
3						
4						
5						
6						

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall	Vertical	Reinforcing Ra	atio:	0.0025	Actual:	0.0028	OK		
Minimum Wall	Horizont	al Reinforcing	Ratio:	0.0025	Actual:	0.0028	OK		
Maximum Ver	tical Rein	foring Spacing	g:	18	Actual:	12	OK		
Maximum Hor	izontal R	einforing Spac	ing:	18	Actual:	12	OK		
Double Curtai	n Reinfor	cing Check:		Double R	Reinforcing (Curtain Red	quired		
Hooked Shear	r Reinford	ing Check:		Hooked S	Shear Reinf	orcing IS F	Required		
Maximum Axia	al Load C	heck:		OK					
Shear Check:			φ=	0.85					
V _u =	111.7	kips	φV _n =	183.7	kips	OK		DCR =	0.61
Bending Check:			φ=	0.88					
M _u left =	1320.0	ft-kips	$\phi M_n =$	699.2	ft-kips	Overstres	sed!	DCR =	1.89
M _u right =	1320.0	ft-kips	ϕM_n =	699.2	ft-kips	Overstres	sed!	DCR =	1.89

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.1

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butui			
Wall Length	8.5	ft.	Vertic
Wall Thickness	6	in.	Distand
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		-	
Left End Bar Size	9	(3-10)	
Number of Bars	1		
Right End Bar Size	9	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
		-	

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	6.83		4.25	
2	7.7		4.25	
3				
4				
5				

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	47.12	12
2	1.6	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wall Vertical Reinforcing Ratio:				0.0025	Actual:	0.0028	OK			
Minimum Wall Horizontal Reinforcing Ratio:			ng Ratio:	0.0025	Actual:	0.0028	OK			
Maximum Vertical Reinforing Spacing:			ing:	18	Actual:	12	OK			
Maximum Ho	rizontal R	einforing Sp	bacing:	18	Actual:	12	OK			
Double Curtai	in Reinfo	rcing Check	:	Single Re	einforcing C	urtain Allov	wed			
Hooked Shea	r Reinfor	cing Check:	I	Hooked S	Shear Reinf	orcing IS R	Required			
Maximum Axi	al Load C	Check:	(OK						
Shear Check:			φ =	0.85						
V _u =	68.2	kips	φV _n =	120.1	kips	OK		DCR =	=	0.57
Bending Check	<u>:</u>		φ =	0.88						
M _u left =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
M _u right =	805.1	ft-kips	ϕM_n =	285.4	ft-kips	Overstres	sed!	DCR =	=	2.82
Boundary Mem	ber Chec	<u>k:</u>								
Boundary Me	mber Red	quired:	YES							
Minimum Bou	Indary Me	ember Lengt	th =	15.3	in.					
Minimum Bou	Indary Me	ember Thick	ness =	9.0	in.					
Minimum Bou	Indary Me	ember Steel	=	0.7	sq.in.	Minimum	Number	Of Bars =	4	
Actual Bour	ndary Me	mber Steel =	=	1.0	sq.in.	Supplied	Number	Of Bars =	1	
Maximum Tie	Spacing	=		0.0	in.					
Length/Wid	th Ratio (Of Hoop Ties	s Shall Not E	xceed 3						
Cross Ties	Or Hoops	Shall Be S	paced 12 in.	o.c. Max	imum					
Alternate Ve	ertical Ba	rs Shall Be	Confined By	Cross Ti	e Or Hoop (Corner				
Ties At Vert	tical Bar S	Splices Shal	I Be Spaced	At 4 in. c	o.c. Maximu	m				
Horizontal Wa	all Reinfo	rcing Shall E	Be Hooked A	t Bounda	iry Edge					

Program: PC-03 CONCRETE SHEAR WALL

Designation: SWA.2.2

Concrete Strength, f'c

Reinforcing Yield, Fy

Input Data:

input Butur	-	-	
Wall Length	9.5	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
			1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
Left End Bar Size	10	(3-10)	
Number of Bars	1		
Right End Bar Size	10	(3-10)	
Number of Bars	1		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.

3.5

40

ksi

ksi

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

		,			
Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
1	7.64		4.75		
2	8.6		4.75		
3					
4					
5					

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	57.21	12
2	1.8	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:									
Minimum Wall Vertical Reinforcing Ratio:				0.0025	Actual:	0.0028	OK			
Minimum Wall Horizontal Reinforcing Ratio:				0.0025	Actual:	0.0028	OK			
Maximum Vertical Reinforing Spacing:			ng:	18	Actual:	12	OK			
Maximum Hor	izontal R	einforing Spa	acing:	18	Actual:	12	OK			
Double Curtai	n Reinfoi	cing Check:		Double R	Reinforcing (Curtain Rec	quired			
Hooked Shear	Reinfor	cing Check:		Hooked S	Shear Reinf	orcing IS R	lequired			
Maximum Axia	al Load C	neck:		OK						
Shear Check:			φ =	0.85						
V _u =	82.6	kips	$\phi V_n =$	134.2	kips	OK		DCR =	=	0.62
Bending Check:			φ =	0.88						
M _u left =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	-	2.40
M _u right =	976.2	ft-kips	ϕM_n =	406.2	ft-kips	Overstres	sed!	DCR =	=	2.40
Boundary Memb	per Chec	<u>k:</u>								
Boundary Mer	nber Red	quired:	YES							
Minimum Bou	ndary Me	ember Length	ן =	17.1	in.					
Minimum Bou	ndary Me	ember Thickr	ness =	9.0	in.					
Minimum Bou	ndary Me	ember Steel =	=	0.8	sq.in.	Minimum	Number	Of Bars =	4	
Actual Boun	dary Mei	mber Steel =		1.3	sq.in.	Supplied I	Number (Of Bars =	1	
Maximum Lie	Spacing	=		0.0	in.					
Length/Widt	n Ratio (DT HOOP TIES	Shall Not E	xceed 3	•					
	Jr Hoops	s Shall Be Sp	aced 12 In.	O.C. Max	imum • Or Lleer (
Alternate ve	entical Ba	rs Snall Be C	De Cressed		e Or Hoop (Jorner				
	ICAI Bar S	Splices Shall	Be Spaced	AL4 IN. C	D.C. IVIAXIMU	[[]				
	ii Reinto	icing Shall B	е поокеа А	r Bonnga	iiy Euge					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.1

Input Data:

mpul Dala.	-	_	
Wall Length	13	ft.	Vertic
Wall Thickness	6	in.	Distan
Unsupported Height	12	ft.	Load
		-	1
Horizontal Bars	4	(3-9)	2
Spacing	12	in.	3
Vertical Bars	4	(3-9)	4
Spacing	12	in.	5
Single or Double Curtain	S	S/D	
		_	
Left End Bar Size	8	(3-10)	
Number of Bars	2		
Right End Bar Size	8	(3-10)	
Number of Bars	2		
Distance From End	4	in.	
Boundary Tie Bars		(3-6) if req	uired.
Concrete Strength, f'c	3.5	ksi	
Reinforcing Yield, Fy	40	ksi	Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)	
Distance measured from left end of wall, ft.	

Load No.	Dead, kips	Live, kips	Distance	Special (Y/N
1	10.45		6.5	
2	11.7		6.5	
3				
4				
5				

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	77.32	12
2	2.5	6
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall Vertical Reinforcing Ratio:				0.0025	Actual:	0.0028	OK		
Minimum Wall Horizontal Reinforcing Ratio:			0.0025	Actual:	0.0028	OK			
Maximum Ver	tical Rein	foring Spacing	g:	18	Actual:	12	OK		
Maximum Hor	izontal R	einforing Spac	ing:	18	Actual:	12	OK		
Double Curtai	n Reinfor	cing Check:		Double R	Reinforcing (Curtain Red	quired		
Hooked Shear	r Reinford	ing Check:		Hooked S	Shear Reinf	orcing IS F	Required		
Maximum Axia	al Load C	heck:		OK					
Shear Check:			φ=	0.85					
V _u =	111.7	kips	φV _n =	183.7	kips	OK		DCR =	0.61
Bending Check:			φ=	0.88					
M _u left =	1320.0	ft-kips	$\phi M_n =$	699.2	ft-kips	Overstres	sed!	DCR =	1.89
M _u right =	1320.0	ft-kips	ϕM_n =	699.2	ft-kips	Overstres	sed!	DCR =	1.89

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

Program: PC-03 CONCRETE SHEAR WALL Designation: SWF.2.2

1998 CBC (1985 UBC Sim.)

_

Input Data:		_							
Wall Length		7 ft		Vertical L	oads, kips:	(Special = ass	embly, > 100 psf	or garage)	
Wall Thickness		<mark>6</mark> ir	۱.	Distance me	asured from le	eft end of wall,	ft.		
Unsupported Heig	ght	12 ft		Load No.	Dead, kips	Live, kips	Distance	Special (Y/	N)
				1	5.63		3.5		
Horizontal Bars		4 (:	3-9)	2	6.3		3.5		
Spacing		<u>12</u> ir	1.	3					
Vertical Bars		4 (;	3-9)	4					
Spacing		<u>12</u> ir	۱. 	5					
Single or Double	Curtain	<mark>S</mark> S	5/D						
			2 4 0 \		Lateral Loa	ads	l laimht a		
Left End Bar Size		9 (.	3-10)		LOad NO.	FORCE, kips	Height, ft.		
Number of Bars	6	1			1	27.01	12		
Right End Bar Siz	<u>ze</u>	9 (.	3-10)		2	1.3	0		
) ad				3				
Distance FIOIII EI		4 11	I. 2 6) if roo	wirod	4				
Doundary Tie Dai	5	(•	5-0) II req	luirea.	 				
Concrete Strengt	h fc	35 4	ci		0				
Reinforcing Yield,	, Fy	<u>40</u> k	si	Note: Pro	gram does	not calculat	e wall self we	eight!	
Minimum Wall Minimum Wall Minimum Wall Maximum Wall Maximum Vertia Maximum Horiz Double Curtain Hooked Shear Maximum Axial	Vertical I Horizonta cal Reini contal Re Reinforc Reinforc Load Cl	Reinforcing R al Reinforcing foring Spacing einforing Spaci cing Check: ing Check: heck:	atio: Ratio: g: cing:	0.0025 0.0025 18 18 Single Re Hooked S OK	Actual: Actual: Actual: Actual: inforcing C hear Reinfo	0.0028 0.0028 12 12 urtain Allow orcing IS Re	OK OK OK ed equired		
Shear Check:			φ=	0.85					
V _u =	39.6	kips	$\phi V_n =$	107.6	kips	OK		DCR =	0.37
Bending Check:			ф =	0.88					
M. left =	464 7	ft-kins	фМ ₂ =	232.4	ft-kins	Overstress	edl	DCR =	2 00
M right =	161.7	ft kine	тни тни =	232 /	ft kine	Overetrees			2.00
Boundary Member Boundary Member	464.7 <u>er Check</u> ber Req	π-κιρs <u>::</u> uired: Υ	φινι _n – ΈS	232.4	п-кірѕ	Overstress	ed!	DCR =	2.00
Minimum Bound	dary Me	mber Length	=	12.6	in.				
Minimum Bound	dary Me	mber Thickne	ss =	9.0	in.				
Minimum Bound	dary Me	mber Steel =		0.6	sq.in.	Minimum N	Number Of Ba	ars = 4	
Actual Bound	ary Men	nber Steel =		1.0	sq.in.	Supplied N	lumber Of Ba	ırs = 1	
Maximum Tie S	pacing =	=		0.0	in.				
Length/Width	Ratio O	f Hoop Ties S	Shall Not	Exceed 3					
Cross Ties Or	r Hoops	Shall Be Spa	ced 12 in	ı. o.c. Maxi	mum				
Alternate Vert	tical Bar	s Shall Be Co	nfined By	y Cross Tie	e Or Hoop C	Corner			
Ties At Vertic	al Bar S	plices Shall B	e Spaceo	d At 4 in. o	.c. Maximui	m			
Horizontal Wall	Reinfor	cing Shall Be	Hooked /	At Boundar	ry Edge	mhar			

Program: PC-03 CONCRETE SHEAR WALL Designation: SW1.1.1

Input Data:

Wall Length	49	ft.
Wall Thickness	12	in.
Unsupported Height	13	ft.
		_
Horizontal Bars	5	(3-
• •	4.0	.

Spacing	10
Vertical Bars	6
Spacing	12
Single or Double Curtain	S

Left End Bar Size	6
Number of Bars	6
Right End Bar Size	6
Number of Bars	6
Distance From End	12
Boundary Tie Bars	
Concrete Strength, fc	3.5

Concrete Strength, TC	
Reinforcing Yield, Fy	

12	in.	Distand
13	ft.	Load
	-	1
5	(3-9)	2
10	in.	3
6	(3-9)	4
12	in.	5
S	S/D	
6	(3-10)	
6		
6	(3-10)	
6		
12	in.	
	(3-6) if req	uired.
	-	
3.5	ksi	

ksi

40

Vertical Loads, kips	S: (Special = ass	sembly, > 100 p	sf or garage)
Distance measured from	left end of wall,	ft.	
Lood No. Dood			On a sigl ()

		,			
Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
1	95.6		24.5		
2					
3					
4					
5					

Lateral Loa	ads	
Load No.	Force, kips	Height, ft
1	225.3	13
2	10.2	6.5
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wal	I Vertical	Reinforcing	g Ratio:	0.0015	Actual:	0.0031	OK		
Minimum Wal	I Horizon	tal Reinford	ing Ratio:	0.0020	Actual:	0.0026	OK		
Maximum Ver	rtical Reir	foring Spa	cing:	18	Actual:	12	OK		
Maximum Hor	rizontal R	einforing S	pacing:	18	Actual:	10	OK		
Double Curtai	in Reinfor	cing Check	c :	Double R	Reinforcing	Curtain Re	quired		
Hooked Shea	r Reinford	cing Check	:	Hooked S	Shear Rein	forcing Not	Required		
Maximum Axi	al Load C	heck:		OK					
Shear Check:			φ =	0.85					
V _u =	329.7	kips	$\phi V_n =$	1347.4	kips	OK		DCR =	0.24
Bending Check:	<u>:</u>		φ =	0.89					
M _u left =	4193.3	ft-kips	φM _n =	4503.2	ft-kips	OK		DCR =	0.93
M _u right =	4193.3	ft-kips	$\phi M_n =$	4503.2	ft-kips	OK		DCR =	0.93

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
+					

Program: PC-03 CONCRETE SHEAR WALL

12

S

6

6

6

6

6

3.5

40

in.

ksi

ksi

Designation: SW1.1.2

Input Data:

Spacing

Left End Bar Size

Number of Bars

Right End Bar Size

Number of Bars

Distance From End

Boundary Tie Bars

Wall Length	25	ft.
Wall Thickness	12	in.
Unsupported Height	13	ft.
		_
Horizontal Bars	5	(3-9)
Spacing	10	in.

Vertical Loads, kips: (Special = assembly, > 100 psf or garage) Distance measured from left end of wall, ft. Load No. Dead king Distance

	Biotaneo mo		n ona or man,			
ft.	Load No.	Dead, kips	Live, kips	Distance	Special (Y/N)
	1	48.8		12.5		
(3-9)	2					1
in.	3					
(3-9)	4					
in.	5					
S/D						-
		Lateral Loa	ads			
(3-10)		Load No.	Force, kips	Height, ft.		
		1	119.5	13		
(3-10)		2	10.2	6.5		
		3				
in.		4				
(3-6) if req	uired.	5				
		6				

Concrete Strength, f'c Reinforcing Yield, Fy

Single or Double Curtain

Note: Program does not calculate wall self weight!

Code Minimum	Checks:								
Minimum Wall Vertical Reinforcing Ratio:			0.0015	Actual:	0.0031	OK			
Minimum Wal	II Horizon	tal Reinfor	cing Ratio:	0.0020	Actual:	0.0026	OK		
Maximum Ver	rtical Reir	nforing Spa	acing:	18	Actual:	12	OK		
Maximum Ho	rizontal R	einforing S	Spacing:	18	Actual:	10	OK		
Double Curtai	in Reinfor	cing Chec	k:	Double R	Reinforcing	Curtain Re	quired		
Hooked Shea	r Reinford	cing Check	K:	Hooked S	Shear Reinf	orcing Not	Required		
Maximum Axi	al Load C	Check:		OK					
Shear Check:			φ =	0.85					
V _u =	181.6	kips	φV _n =	687.4	kips	OK		DCR =	0.26
Bending Check	<u>:</u>		φ=	0.89					
M _u left =	2267.7	ft-kips	φM _n =	2292.8	ft-kips	OK		DCR =	0.99
M _u right =	2267.7	ft-kips	$\phi M_n =$	2292.8	ft-kips	OK		DCR =	0.99

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
*					

1998 CBC (1985 UBC Sim.)

Program: PC-03 CONCRETE SHEAR WALL Designation: SW5.1.5

in. (3-9) in. S/D

Input Data:

Wall Length	5.67	ft.
Wall Thickness	18	in.
Unsupported Height	5.75	ft.
Horizontal Bars	5	(3-9)

Tion Eontai Baro	•
Spacing	12
Vertical Bars	5
Spacing	12
Single or Double Curtain	D

Left End Bar Size	6	(3-10)
Number of Bars	3	
Right End Bar Size	6	(3-10)
Number of Bars	3	
Distance From End	3	in.
Boundary Tie Bars		(3-6) if required.
		-
Concrete Strength, f'c	3.5	ksi
Reinforcing Yield, Fy	40	ksi Note:

Vertical Loads, kips: (Special = assembly, > 100 psf or garage)
Distance measured from left end of wall, ft.

Load No.	Dead, kips	Live, kips	Distance	Special (`	Y/N)
1	18.9		2.835		
2					
3					
4					
5					

Lateral Loa Load No.	ads Force, kips	Height, ft.
1	27.4	5.75
2	4	2.875
3		
4		
5		
6		

Note: Program does not calculate wall self weight!

Code Minimum (Checks:								
Minimum Wall	Minimum Wall Vertical Reinforcing Ratio:			0.0012	Actual	: 0.0029	OK		
Minimum Wall	Horizon	tal Reinfor	cing Ratio:	0.0020	Actual	: 0.0029	OK		
Maximum Ver	tical Reir	nforing Spa	acing:	18	Actual	: 12	OK		
Maximum Hori	izontal R	einforing S	Spacing:	18	Actual	: 12	OK		
Double Curtair	n Reinfo	rcing Chec	k:	Double F	Reinforcing	Curtain Re	quired		
Hooked Shear	Reinfor	cing Check	c :	Hooked \$	Shear Reir	nforcing Not	Required		
Maximum Axia	al Load C	Check:		OK					
Shear Check:			φ =	0.85					
V _u =	44.0	kips	$\phi V_n =$	243.4	kips	OK		DCR =	0.18
Bending Check:			φ =	0.89					
M _u left =	236.7	ft-kips	$\phi M_n =$	252.6	ft-kips	OK		DCR =	0.94
M _u right =	236.7	ft-kips	$\phi M_n =$	252.6	ft-kips	OK		DCR =	0.94

Boundary Member Check:

Boundary Member Required:	NO				
*		*	*		
*		*	*		
*		*	*	*	*
*		*	*	*	*
*		*	*		
۰. ۲					

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 Concrete Beam ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Lic. # : KW-06003381 Licensee : AHEARN & KNOX, INC Joist J-1 (betw. gl 2 & 3; assembly) Description : **Material Properties** Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05 3.50 ksi 0.90 Φ Phi Values Δ Flexure : fc 1/2 fr = f'c 7.50 443.71 psi 0.750 Shear : = 145.0 pcf 0.850 Ψ Density β_1 λ LtWt Factor 10 3,372.17 ksi Elastic Modulus = Fy - Stirrups 40.0 ksi 2 2 29,000.0 ksi E - Stirrups = fy - Main Rebar = 40.0 ksi # Stirrup Bar Size # = 3 29.000.0 ksi E - Main Rebar = 2 Number of Resisting Legs Per Stirrup = 12 in 60 ir Load Combination 2006 IBC & ASCE 7-05 (0.3)(0 192 52°aw⇒2450′ft \$2¦aw⇒245) fi \$6jaw⇒2450 ft \$\$jaw⇒2450 fi \$6jaw⇒2450 f **Cross Section & Reinforcing Details** Tee Section, Stem Width = 12.0 in, Total Height = 15.0 in, Top Flange Width = 60.0 in, Flange Thickness = 3.0 in Span #1 Reinforcing 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span Span #2 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 16.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft in this span Span #3 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 24.0 ft in this span 1-#8 at 1.50 in from Bottom, from 6.0 to 18.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft in this span Span #4 Reinforcing 1-#8 at 1.50 in from Bottom, from 0.0 to 8.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft in this span Span #5 Reinforcing.... 1-#8 at 1.50 in from Bottom, from 0.0 to 20.0 ft in this span 1-#8 at 1.50 in from Bottom, from 4.0 to 24.0 ft in this span 1-#8 at 2.0 in from Top. from 0.0 to 20.0 ft in this span 1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in this span 1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in this span **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Loads on all spans... D = 0.0830 Uniform Load on ALL spans : D = 0.0830 ksf, Tributary Width = 3.0 ft Load for Span Number 1 Uniform Load : L = 0.10 ksf. Tributary Width = 3.0 ft. (corridor LL) Load for Span Number 2

Uniform Load : L = 0.10 ksf, Extent = 8.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (assembly LL) Uniform Load : L = 0.10 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 3.0 ft, (coridor) Load for Span Number 3 Uniform Load : L = 0.10 ksf, Extent = 0.0 -->> 18.0 ft, Tributary Width = 3.0 ft, (assembly LL) Uniform Load : L = 0.0450 ksf, Extent = 18.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (office LL) Load for Span Number 4

Uniform Load : L = 0.050 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 3.0 ft, (office LL) Uniform Load : L = 0.0640 ksf, Extent = 16.0 -->> 24.0 ft, Tributary Width = 3.0 ft, (corridor LL)

Printed: 15 SEP 2011, 12:51PM

Decime Old

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # :	KW-06003381	

Description : Joist J-1 (betw. gl 2 & 3; assembly)

Load for Span Number 5

Uniform Load : L = 0.050 ksf, Tributary Width = 3.0 ft, (office LL)

DESIGN SUMMARY			Design	IUN	
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.882 : 1 Typical Section -50.717 k-ft 57 522 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection	0.111 in Ratio = -0.066 in Ratio = 0.154 in Ratio =	2595 4357 1869	
Load Combin ati@ 0D+0.50Lr+1.60L+1.60H Location of maximum on span Span # where maximum occurs	I, LL Comb Run (LL*L*) 0.000ft Span # 2	Max Upward Total Deflection	-0.041 in Ratio =	6972	

Vertical Reactions - Unfact	ored		S	Support notation	: Far left is #1		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
Overall MAXimum	5.442	15.052	13.998	11.326	11.528	4.012	
D Only	2.359	6.762	5.819	5.819	6.762	2.359	
L Only, LL Comb Run (****L)	0.004	-0.026	0.103	-0.388	2.347	1.559	
L Only, LL Comb Run (***L*)	-0.014	0.081	-0.325	2.123	2.264	-0.194	
L Only, LL Comb Run (***LL)	-0.009	0.056	-0.222	1.736	4.611	1.365	
L Only, LL Comb Run (**L**)	0.090	-0.539	3.950	3.126	-0.501	0.083	
L Only, LL Comb Run (**L*L)	0.094	-0.564	4.054	2.738	1.846	1.642	
L Only, LL Comb Run (**LL*)	0.076	-0.457	3.625	5.249	1.763	-0.110	
L Only, LL Comb Run (**LLL)	0.081	-0.483	3.728	4.861	4.110	1.449	
L Only, LL Comb Run (*L***)	-0.353	3.919	4.125	-0.620	0.155	-0.026	
L Only, LL Comb Run (*L**L)	-0.349	3.893	4.229	-1.008	2.502	1.533	
L Only, LL Comb Run (*L*L*)	-0.367	4.000	3.800	1.503	2.419	-0.219	
L Only, LL Comb Run (*L*LL)	-0.362	3.974	3.903	1.116	4.766	1.339	
L Only, LL Comb Run (*LL**)	-0.263	3.380	8.076	2.505	-0.346	0.058	
L Only, LL Comb Run (*LL*L)	-0.259	3.354	8.179	2.118	2.001	1.616	
L Only, LL Comb Run (*LLL*)	-0.277	3.461	7.750	4.629	1.918	-0.136	
L Only, LL Comb Run (*LLLL)	-0.273	3.436	7.854	4.241	4.265	1.423	
L Only, LL Comb Run (L****)	3.118	4.694	-0.775	0.207	-0.052	0.009	
L Only, LL Comb Run (L***L)	3.122	4.668	-0.672	-0.181	2.295	1.567	
L Only, LL Comb Run (L**L*)	3.104	4.775	-1.101	2.330	2.212	-0.185	
L Only, LL Comb Run (L**LL)	3.108	4.749	-0.997	1.943	4.559	1.374	
L Only, LL Comb Run (L*L**)	3.207	4.155	3.175	3.332	-0.552	0.092	
L Only, LL Comb Run (L*L*L)	3.212	4.129	3.279	2.945	1.795	1.651	
L Only, LL Comb Run (L*LL*)	3.194	4.237	2.850	5.456	1.712	-0.102	
L Only, LL Comb Run (L*LLL)	3.198	4.211	2.953	5.068	4.058	1.457	
L Only, LL Comb Run (LL***)	2.765	8.612	3.350	-0.413	0.103	-0.017	
L Only, LL Comb Run (LL**L)	2.769	8.587	3.454	-0.801	2.450	1.542	
L Only, LL Comb Run (LL*L*)	2.751	8.694	3.025	1.710	2.367	-0.211	
L Only, LL Comb Run (LL*LL)	2.755	8.668	3.128	1.322	4.714	1.348	
L Only, LL Comb Run (LLL**)	2.854	8.074	7.301	2.712	-0.397	0.066	
L Only, LL Comb Run (LLL*L)	2.859	8.048	7.404	2.325	1.950	1.625	
L Only, LL Comb Run (LLLL*)	2.841	8.155	6.975	4.836	1.867	-0.127	
L Only, LL Comb Run (LLLLL)	2.845	8.129	7.079	4.448	4.213	1.431	
D+L, LL Comb Run (****L)	2.363	6.736	5.922	5.431	9.109	3.918	
D+L, LL Comb Run (***L*)	2.345	6.844	5.493	7.942	9.026	2.165	
D+L, LL Comb Run (***LL)	2.350	6.818	5.597	7.555	11.373	3.724	
D+L, LL Comb Run (**L**)	2.449	6.224	9.769	8.944	6.262	2.442	
D+L, LL Comb Run (**L*L)	2.453	6.198	9.872	8.557	8.609	4.001	
D+L, LL Comb Run (**LL*)	2.435	6.305	9.444	11.068	8.526	2.249	
D+L, LL Comb Run (**LLL)	2.439	6.279	9.547	10.680	10.872	3.808	
D+L, LL Comb Run (*L***)	2.006	10.681	9.944	5.199	6.917	2.333	
D+L, LL Comb Run (*L**L)	2.010	10.655	10.047	4.811	9.264	3.892	
D+L, LL Comb Run (*L*L*)	1.992	10.762	9.619	7.322	9.181	2.140	
D+L, LL Comb Run (*L*LL)	1.997	10.736	9.722	6.934	11.528	3.698	
D+L, LL Comb Run (*LL**)	2.096	10.142	13.894	8.324	6.417	2.417	
D+L, LL Comb Run (*LL*L)	2.100	10.117	13.998	7.937	8.764	3.975	
D+L, LL Comb Run (*LLL*)	2.082	10.224	13.569	10.448	8.681	2.223	
D+L, LL Comb Run (*LLLL)	2.086	10.198	13.672	10.060	11.027	3.782	
D+L, LL Comb Run (L****)	5.390	11.653	4.904	6.063	6.701	2.369	
D+L, LL Comb Run (L***L)	5.392	11.632	5.004	5.676	9.048	3.928	
D+L, LL Comb Run (L**L*)	5.382	11.722	4.588	8.184	8.966	2.175	
D+L, LL Comb Run (L**LL)	5.384	11.700	4.688	7.797	11.312	3.734	

Project Notes :

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Licensee : AHEARN & KNOX, INC

Concrete Beam

Lic. # : KW-06003381

Description : Joist J-1 (betw. gl 2 & 3; assembly)

Vertical Reactions - Unfact	tored		5	Support notation	: Far left is #1		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
D+L, LL Comb Run (L*L**)	5.439	11.206	8.790	9.206	6.196	2.453	
D+L, LL Comb Run (L*L*L)	5.442	11.185	8.890	8.819	8.543	4.012	
D+L, LL Comb Run (L*LL*)	5.432	11.273	8.474	11.326	8.461	2.260	
D+L, LL Comb Run (L*LLL)	5.434	11.252	8.574	10.940	10.808	3.818	
D+L, LL Comb Run (LL***)	5.290	15.003	9.425	5.342	6.882	2.339	
D+L, LL Comb Run (LL**L)	5.289	14.987	9.521	4.956	9.228	3.898	
D+L, LL Comb Run (LL*L*)	5.290	15.052	9.122	7.460	9.147	2.145	
D+L, LL Comb Run (LL*LL)	5.290	15.037	9.218	7.074	11.493	3.704	
D+L, LL Comb Run (LLL**)	5.279	14.691	13.218	8.507	6.371	2.424	
D+L, LL Comb Run (LLL*L)	5.278	14.676	13.314	8.122	8.717	3.983	
D+L, LL Comb Run (LLLL*)	5.281	14.737	12.917	10.625	8.636	2.230	
D+L, LL Comb Run (LLLLL)	5.280	14.723	13.012	10.239	10.983	3.789	

Shear Stirrup Requirements

Between 0.00 to 19.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 20.40 to 27.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at 0.000 in Between 27.60 to 45.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 45.60 to 50.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at 0.000 in Between 71.00 to 70.20 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 72.00 to 95.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 96.00 to 96.60 ft, PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 97.20 to 194.0 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination			Dondin	a Stross Deput	c (kft)
	• "	Location (ft)		y Siless Result	5 (K-IL)
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envelo	оре				
Span # 1	1	23.400	-43.98	57.52	0.76
Span # 2	2	24.000	-50.72	57.52	0.88
Span # 3	3	48.000	-42.92	57.52	0.75
Span # 4	4	72.000	-35.54	57.52	0.62
Span # 5	5	96.000	-35.80	57.52	0.62
+1.40D					
Span # 1	1	23.400	-18.16	57.52	0.32
Span # 2	2	24.000	-21.14	57.52	0.37
Span # 3	3	48 000	-15.85	57.52	0.28
Span # 4	ŭ 4	95 400	-18 56	57.52	0.32
Span # 5	5	96,000	-21 14	57.52	0.02
$\pm 1.20D\pm 0.501$ r $\pm 1.601\pm 1.601$		50.000	-21.14	57.52	0.07
Span # 1		23 100	15.40	57 52	0.27
Span # 2	1	23.400	-10.40	57.52	0.27
Span # 2	2	24.000	-17.95	57.52	0.31
Span # 3	3	48.000	-14.25	57.52	0.25
Span # 4	4	95.400	-24.87	57.52	0.43
Span # 5	5	96.000	-27.38	57.52	0.48
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb		40.07		
Span # 1	1	23.400	-16.07	57.52	0.28
Span # 2	2	24.000	-18.64	57.52	0.32
Span # 3	3	71.400	-19.05	57.52	0.33
Span # 4	4	84.000	16.39	35.90	0.46
Span # 5	5	96.000	-25.55	57.52	0.44
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	23.400	-15.91	57.52	0.28
Span # 2	2	24.000	-18.47	57.52	0.32
Span # 3	3	71.400	-16.65	57.52	0.29
Span # 4	4	95.400	-30.37	57.52	0.53
Span # 5	5	96.000	-34.81	57.52	0.61
+1.20D+0.50Lr+1.60L+1.60	H. LL Comb				
Span # 1	1	3 600	8 77	35 90	0 24
Span # 2	2	47 400	-24.96	57 52	0.43
Span # 3	3	48 000	-27.37	57.52	0.48
Span # 4	4	72 000	-26.40	57 52	0.46
Span # 5	- 5	96.000	_14 91	57 52	0.40
± 1.20 D ± 0.50 r ± 1.60 ± 1.60	H II Comh	30.000	-14.31	51.52	0.20
Span # 1	1, LL 001110	3 600	8 80	35.00	0.25
Spall # 1 Span # 2	1 0	3.000	0.00	50.90	0.23 0.4F
Span # 2	2	47.400	-20.00	57.52	0.45
Span # 3	3	40.000	-20.04	57.52	0.49
Span # 4	4	72.000	-23.92	57.52	0.42

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Joist	J-1 (betw. gl	2 & 3; assembly)						
Load Combination		Location (ft)	Be	ending Stress Result	s (k-ft)			
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio			
Span # 2	2	24.000	-27.01	57.52	0.47			
Span # 3	3	48.000	-21.20	57.52	0.37			
Span # 4	4	95.400	-18.01	57.52	0.31			
Span # 5	5	96.000	-20.22	57.52	0.35			
+1.20D+0.50L+0.20S+E, LL	Comb Run (
Span # 1	1	23.400	-23.40	57.52	0.41			
Span # 2	2	24.000	-27.23	57.52	0.47			
Span # 3	3	48.000	-20.35	57.52	0.35			
Span # 4	4	72.000	-19.21	57.52	0.33			
Span # 5	5	96.000	-19.65	57.52	0.34			
+1.20D+0.50L+0.20S+E. LL	. Comb Run (
Span # 1	1	23.400	-23.35	57.52	0.41			
Span # 2	2	24.000	-27.18	57.52	0.47			
Span # 3	3	48.000	-20.55	57.52	0.36			
Span # 4	4	95.400	-19.73	57.52	0.34			
Span # 5	5	96.000	-22.54	57.52	0.39			
+0.90D+1.60W+1.60H								
Span # 1	1	23.400	-11.67	57.52	0.20			
Span # 2	2	24.000	-13.59	57.52	0.24			
Span # 3	3	48.000	-10.19	57.52	0.18			
Span # 4	4	95,400	-11.93	57.52	0.21			
Span # 5	5	96.000	-13.59	57.52	0.24			
+0.90D+E+1.60H								
Span # 1	1	23.400	-11.67	57.52	0.20			
Span # 2	2	24.000	-13.59	57.52	0.24			
Span # 3	3	48.000	-10.19	57.52	0.18			
Span # 4	4	95.400	-11.93	57.52	0.21			
Span # 5	5	96.000	-13.59	57.52	0.24			
Overall Maximum D	eflections	- Unfactored	d Loads					
Load Combination		Snan M	lav "-" Dofl	Location in Span	Lood Combination	N/	lav "+" Dofl	Location in Span

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*L)	1	0.1540	10.800	D+L, LL Comb Run (L*L*L)	-0.0109	25.200
D+L, LL Comb Run (*L*L*)	2	0.0641	13.200	D+L, LL Comb Run (L*L*L)	-0.0280	3.600
D+L, LL Comb Run (L*L*L)	3	0.0787	10.800	D+L, LL Comb Run (L*L*L)	-0.0060	25.200
D+L, LL Comb Run (*L*L*)	4	0.0427	10.800	D+L, LL Comb Run (L*L*L)	-0.0149	20.400
D+L, LL Comb Run (L*L*L)	5	0.0843	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

108) 978-1970			
VWW.AKHSE.COM	Р	roject Notes :	
			Printed: 15 SEP 2011, 12:51PM
concrete Beam		File: P:\Cupertino\M11-040 City Hall An ENERCALC, INC, 198	alysis\Calcs\m11-040 enercalc.ec6 3-2011, Build:6.11.9.9, Ver:6.11.9.9
c. # : KW-06003381		License	e : AHEARN & KNOX, INC
escription : Joist J-1 (betw. gl 1 & 2; corridor)			
laterial Properties		Calculations per ACI 318-08, IBC 20	09, CBC 2010, ASCE 7-0
$^{1/2}$ = 3.50 ksi	♦ Phi Values Flexure : 0.90		
$r = fc^{-1} / .50 = 443.71 \text{psi}$	Shear: 0.750		
ψ Density = 145.0 pcr	$\beta_1 = 0.850$		
LIVIT FACTOR = 1.0			
= 3,372.17 ks	Fy - Surrups = 20,000,0 ks	I に 	
y - Main Rebar = 40.0 ksi	E - Surrup S = 29,000.0 ks Stirrup Bar Size # = # 3		
- Main Rebar = 29,000.0 ksi	$\frac{1}{2} \log \log \frac{1}{2} \log $		
Number of Resisting	j Legs Per Sunup – 2	4 12 in 60 in	→,
oad Combination 2006 IBC & ASCE 7-05			
	D(0.2490) L(0.3	0)	
span=24:0 n span=2	4:0 ft 5-part=24:0 ft	Separi=≥4:0 ft	Span=⊻4:0 ft
Cross Section & Reinforcing Details Tee Section, Stem Width = 12.0 in, Total Heigh	it = 15.0 in, Top Flange Width = 60.0	in, Flange Thickness = 3.0 in	
Span #1 Reinforcing			
1-#8 at 1.50 in from Bottom, from 0.0 to 20	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 4.0 to 24.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft	in this span	1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft in	this span
1-#8 at 2.0 In from 10p, from 16.0 to 24.0	t in this span		
1-#8 at 1.50 in from Bottom from 0.0 to 20	0 ft in this span	1-#8 at 1 50 in from Bottom from 16 0 to 24	0 ft in this span
1-#8 at 2.0 in from Top. from 0.0 to 8.0 ft i	this span	1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft in	this span
1-#8 at 2.0 in from Top, from 16.0 to 24.0	t in this span	1-#8 at 2.0 in from Top, from 18.0 to 24.0 ft i	n this span
Span #3 Reinforcing			
1-#8 at 1.50 in from Bottom, from 0.0 to 24	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 6.0 to 18.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 6.0 ft ii	n this span	1-#8 at 2.0 in from 1 op, from 0.0 to 24.0 ft in	this span
1-#8 at 2.0 In from Top, from 18.0 to 24.0	t in this span		
1-#8 at 1 50 in from Rottom from 0.0 to 9) ft in this snap	1.#8 at 1.50 in from Rottom, from 4.0 to 24.0	Ift in this span
1-#8 at 2.0 in from Top from 0.0 to 6.0 ft in	this span	1-#8 at 2.0 in from Top from 0.0 to 8.0 ft in t	his span
1-#8 at 2.0 in from Top, from 4.0 to 24.0 ft	in this span	1-#8 at 2.0 in from Top, from 16.0 to 24.0 ft i	n this span
Span #5 Reinforcing	F		· · · · · · · · · · · · · · · · · · ·
1-#8 at 1.50 in from Bottom, from 0.0 to 20	.0 ft in this span	1-#8 at 1.50 in from Bottom, from 4.0 to 24.0	ft in this span
1-#8 at 2.0 in from Top, from 0.0 to 20.0 ft 1-#8 at 2.0 in from Top. from 4.0 to 24.0 ft	in this span in this span	1-#8 at 2.0 in from Top, from 0.0 to 8.0 ft in t	his span
pplied Loads	-r -	Service loads entered. Load Factors will	be applied for calculations
oads on all spans			
D = 0.0830, L = 0.10			
Uniform Load on ALL spans : $D = 0.0830$. $L = 0.0830$	· · · · · · · · · · · · · · · · · · ·		
	0.10 kst, Tributary Width = 3.0 ft	_	

DESIGN SUMMANT			Design		
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.890 : 1 Typical Section -51.188 k-ft 57.522 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.113 in Ratio = -0.067 in Ratio = 0.156 in Ratio = -0.044 in Ratio =	2549 4301 1846 6573	
Location of maximum on span	0.000ft				
Span # where maximum occurs	Span # 5				
•					

Concrete Beam

Lic. # : KW-06003381

Joist J-1 (betw. gl 1 & 2; corridor) Description :

Vertical Reactions - Unfactor	red		S	Support notation :	: Far left is #1		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	
Overall MAXimum	5.448	15.098	14.275	14.275	15.107	5.448	
D Only	2.359	6.762	5.819	5.819	6.762	2.359	
L Only, LL Comb Run (****L)	0.009	-0.052	0.207	-0.775	4.694	3.118	
L Only, LL Comb Run (***L*)	-0.026	0.155	-0.620	4.125	3.919	-0.353	
L Only, LL Comb Run (***LL)	-0.017	0.103	-0.413	3.350	8.612	2.765	
L Only, LL Comb Run (**L**)	0.095	-0.568	4.074	4.074	-0.568	0.095	
L Only, LL Comb Run (**LL*)	0.103	-0.620	4.280	3.299	4.125	3.212	
L Only, LL Comb Run (**LLL)	0.009	-0.413	3.454	0.199 7.494	3.330 8.044	-0.250	
L Only, LL Comb Run (*L***)	-0.353	-0.403	3.000 4 125	-0.620	0.044	-0.026	
L Only, LL Comb Run (*L **L)	-0.344	3 867	4.332	-1.395	4 849	3 092	
L Only, LL Comb Run (*L*L*)	-0.379	4.074	3.505	3.505	4.074	-0.379	
L Only, LL Comb Run (*L*LL)	-0.370	4.022	3.712	2.730	8.767	2.739	
L Only, LL Comb Run (*LL**)	-0.258	3.350	8.199	3.454	-0.413	0.069	
L Only, LL Comb Run (*LL*L)	-0.250	3.299	8.406	2.678	4.280	3.187	
L Only, LL Comb Run (*LLL*)	-0.284	3.505	7.579	7.579	3.505	-0.284	
L Only, LL Comb Run (*LLLL)	-0.276	3.454	7.786	6.804	8.199	2.833	
L Only, LL Comb Run (L****)	3.118	4.694	-0.775	0.207	-0.052	0.009	
L Only, LL Comb Run (L***L)	3.126	4.642	-0.568	-0.568	4.642	3.126	
L Only, LL Comb Run (L**L*)	3.092	4.849	-1.395	4.332	3.867	-0.344	
L Only, LL Comb Run (L**LL)	3.100	4.797	-1.189	3.557	8.561	2.773	
L Only, LL Comb Run (L*L**)	3.212	4.125	3.299	4.280	-0.620	0.103	
L Only, LL Comb Run (L L L)	3.221	4.074	3.505	3.303	4.074	0.221 0.250	
L Only, LL Comb Run (L LL)	3.107	4.200	2.070	7 631	7 992	2 868	
L Only, LL Comb Run (LL ***)	2 765	8 612	3 350	-0.413	0 103	-0.017	
L Only, LL Comb Run (LL**L)	2.773	8.561	3.557	-1.189	4,797	3.100	
L Only, LL Comb Run (LL*L*)	2.739	8.767	2.730	3.712	4.022	-0.370	
L Only, LL Comb Run (LL*LL)	2.747	8.716	2.937	2.937	8.716	2.747	
L Only, LL Comb Run (LLL**)	2.859	8.044	7.424	3.660	-0.465	0.078	
L Only, LL Comb Run (LLL*L)	2.868	7.992	7.631	2.885	4.229	3.195	
L Only, LL Comb Run (LLLL*)	2.833	8.199	6.804	7.786	3.454	-0.276	
L Only, LL Comb Run (LLLLL)	2.842	8.147	7.011	7.011	8.147	2.842	
D+L, LL Comb Run (****L)	2.369	6.701	6.063	4.904	11.653	5.390	
D+L, LL Comb Run (***L*)	2.333	6.917	5.199	9.944	10.681	2.006	
D+L, LL Comb Run (***L**)	2.339	6.881	5.343	9.419	15.013	5.285	
D+L, LL Comb Run (L)	2.404	6 128	9.092	9.092	0.194	Z.404 5 //2	
D+L, LL Comb Run (*LL*)	2.403	6 349	9 272	14 018	10 113	2 101	
D+L L Comb Run (** L)	2 436	6 302	9 4 5 9	13 325	14 684	5 273	
D+L. LL Comb Run (*L***)	2.006	10.681	9.944	5,199	6.917	2.333	
D+L, LL Comb Run (*L**L)	2.016	10.621	10.183	4.301	11.784	5.375	
D+L, LL Comb Run (*L*L*)	1.980	10.836	9.324	9.324	10.836	1.980	
D+L, LL Comb Run (*L*LL)	1.986	10.803	9.457	8.841	15.107	5.286	
D+L, LL Comb Run (*LL**)	2.101	10.113	14.018	9.272	6.349	2.428	
D+L, LL Comb Run (*LL*L)	2.111	10.048	14.275	8.308	11.309	5.428	
D+L, LL Comb Run (*LLL*)	2.075	10.268	13.398	13.398	10.268	2.075	
D+L, LL Comb Run (*LLLL)	2.082	10.224	13.573	12.751	14.774	5.276	
D+L, LL Comb Run (L***)	5.390	11.653	4.904	6.063 5.142	6.701 11.601	2.369	
D+L, LL Comb Run (L ×1 *)	5.390	11.001	0.140 1 201	0.140 10.183	10.621	0.090 2.016	
D+L, LL Comb Run (L*1L)	5 377	11.704	4.301	9 645	14 974	5 285	
D+L, LL Comb Run (L*L**)	5 442	11 181	8 909	10 155	6 128	2 465	
D+L L Comb Run (L*L*)	5 448	11 125	9 166	9 166	11 125	5 448	
D+L. LL Comb Run (L*LL*)	5.428	11.309	8.308	14.275	10.048	2.111	
D+L, LL Comb Run (L*LLL)	5.432	11.270	8.493	13.569	14.642	5.274	
D+L, LL Comb Run (LL***)	5.290	15.003	9.425	5.342	6.882	2.339	
D+L, LL Comb Run (LL**L)	5.290	14.964	9.651	4.442	11.755	5.377	
D+L, LL Comb Run (LL*L*)	5.290	15.098	8.846	9.457	10.803	1.986	
D+L, LL Comb Run (LL*LL)	5.288	15.082	8.970	8.964	15.092	5.283	
D+L, LL Comb Run (LLL**)	5.278	14.673	13.333	9.458	6.303	2.436	
D+L, LL Comb Run (LLL*L)	5.279	14.631	13.576	8.491	11.271	5.432	
D+L, LL Comb Run (LLLL*)	5.282	14.763	12.758	13.571	10.224	2.082	
D+L, LL COMD RUN (LLLLL)	5.279	14.740	12.922	12.914	14./51	5.274	

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Printed: 15 SEP 2011, 12:51PM

File: P:\CupertinoiM11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Concrete Beam

Lic. # : KW-06003381

Description : Joist J-1 (betw. gl 1 & 2; corridor)

Shear Stirrup Requirements

Between 0.00 to 19.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 20.40 to 27.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 27.60 to 45.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 45.60 to 51.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 51.60 to 68.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 69.00 to 74.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 75.00 to 92.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	
Between 93.00 to 99.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.4.5.1, use stirrups spaced at	6.000 in
Between 100.20 to 119.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending	g Stress Result	s (k-ft)
Segment Length	Span #	in Span	Mu : Max	Phi*Mny	Stress Ratio
MAXimum BENDING Envol	200	in opun			
Spop # 1	Jpe 1	22 400	A A A A	E7 E9	0.77
Span # 2	1	23.400	-44.44	57.52	0.77
Span # 2	2	24.000	-31.19	57.5Z	0.09
Span # 3	3	48.000	-44.34	57.52	0.77
Span # 4	4	95.400	-44.93	57.52	0.78
Span # 5	5	96.000	-51.19	57.52	0.89
+1.40D					
Span # 1	1	23.400	-18.16	57.52	0.32
Span # 2	2	24.000	-21.14	57.52	0.37
Span # 3	3	48.000	-15.85	57.52	0.28
Span # 4	4	95.400	-18.56	57.52	0.32
Span # 5	5	96.000	-21.14	57.52	0.37
+1.20D+0.50Lr+1.60L+1.60	H. LL Comb				
Span # 1	1	23 400	-15 24	57 52	0 27
Span # 2	2	24 000	-17 79	57.52	0.31
Span # 3	2	18 000	_1/ 01	57.52	0.26
Span # 1	3	95.000	23.84	57.52	0.20
Span # 5	4	55.400 ## ###	-00.04	J1.52 2F 00	0.08
		##.###	23.10	33.90	0.04
+1.20D+0.50LF+1.60L+1.60I		00 400	40 50		0.00
Span # 1	1	23.400	-16.53	57.52	0.29
Span # 2	2	24.000	-19.11	57.52	0.33
Span # 3	3	71.400	-25.90	57.52	0.45
Span # 4	4	84.000	26.00	35.90	0.72
Span # 5	5	96.000	-31.68	57.52	0.55
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	[′] 1	23.400	-16.21	57.52	0.28
Span # 2	2	24,000	-18.78	57.52	0.33
Span # 3	3	71 400	-21 10	57.52	0.37
Span # 4	4	95 400	-44.06	57 52	0.77
Span # 5	5	96,000	-50.20	57 52	0.87
+1.200+0.501r+1.601+1.601		30.000	-30.20	57.52	0.07
+1.20D+0.30LI+1.00L+1.00I		2 600	0 00	25.00	0.25
Span # 2	1	3.000	0.00	55.90	0.25
Span # 2	2	47.400	-25.70	57.52	0.45
Span # 3	3	48.000	-28.14	57.52	0.49
Span # 4	4	72.000	-28.14	57.52	0.49
Span # 5	5	96.000	-14.48	57.52	0.25
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	3.600	8.85	35.90	0.25
Span # 2	2	47.400	-26.98	57.52	0.47
Span # 3	3	48.000	-29.46	57.52	0.51
Span #4	4	95,400	-30.66	57.52	0.53
Span # 5	5	## ###	23.65	35.90	0.66
+1.20D+0.50Ir+1.60I+1.60I	H I I Comb		20100		0.00
Snan # 1	1	3 600	8 65	35.00	0.24
Span # 2	2	47.400	0.00	55.50	0.24
Span # 2	2	47.400	-21.00	57.52	0.36
Span # 3	3	/ 1.400	-31.UX	57.52	0.64
Span # 4	4	/2.000	-43.02	57.52	0.75
Span # 5	5	96.000	-28.04	57.52	0.49
+1.20D+0.50Lr+1.60L+1.60I	H, LL Comb				
Span # 1	1	3.600	8.70	35.90	0.24
Span # 2	2	47.400	-23.14	57.52	0.40
Span # 3	3	71.400	-32.28	57.52	0.56
Span # 4	4	95.400	-40.88	57.52	0.71
Span # 5	5	96.000	-46.56	57.52	0.81
+1 20D+0 50l r+1 60l +1 60l	H II Comb				2.0.
Span # 1	1	23 400	-28 79	57 52	0.50
Span # 2	2	36,000	26.00	35.00	0.00
00011 # 2	2	00.000	20.00	55.50	0.12

Project Notes :

Concrete Beam

Lic. # : KW-06003381 Description : Joist J-1 (betw. gl 1 & 2; corridor)

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Licensee : AHEARN & KNOX, INC

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)	
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	
+0.90D+1.60W+1.60H						
Span # 1	1	23.400	-11.67	57.52	0.20	
Span # 2	2	24.000	-13.59	57.52	0.24	
Span # 3	3	48.000	-10.19	57.52	0.18	
Span # 4	4	95.400	-11.93	57.52	0.21	
Span # 5	5	96.000	-13.59	57.52	0.24	
+0.90D+E+1.60H						
Span # 1	1	23.400	-11.67	57.52	0.20	
Span # 2	2	24.000	-13.59	57.52	0.24	
Span # 3	3	48.000	-10.19	57.52	0.18	
Span # 4	4	95.400	-11.93	57.52	0.21	
Span # 5	5	96.000	-13.59	57.52	0.24	

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*L)	1	0.1560	10.800	D+L, LL Comb Run (L*L*L)	-0.0112	25.200
D+L, LL Comb Run (*L*L*)	2	0.0667	13.200	D+L, LL Comb Run (L*L*L)	-0.0289	3.600
D+L, LL Comb Run (L*L*L)	3	0.0869	13.200		0.0000	3.600
D+L, LL Comb Run (*L*L*)	4	0.0667	10.800	D+L, LL Comb Run (L*L*L)	-0.0289	20.400
D+L, LL Comb Run (L*L*L)	5	0.1560	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

Printed: 15 SEP 2011, 12:51PM

Project Notes :

Concrete Beam

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G1 (gridline B)

Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL)

Lic. # : KW-06003381 Girder G1 (g Description :

Span # where maximum occurs

Project Notes :

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Liconsoo : AHEARN & KNOX IN

Description :	Girder G1 (gridline B)					
DESIGN SUN	IMARY				Desig	n OK
Maximum Ber	nding Stress Ratio =	0.542 : 1	Maximum Deflection			
Section used	I for this span	Typical Section	Max Downward L+Lr+S Deflection	0.032 in	Ratio =	8907
Ν	/u : Applied	-352.01 k-ft	Max Upward L+Lr+S Deflection	-0.037 in	Ratio =	7683
Ν	/In * Phi : Allowable	649.56 k-ft	Max Downward Total Deflection	0.063 in	Ratio =	4605
Load Combina Location of ma	atib@0D+0.50Lr+1.60L+1.6 aximum on span	60H, LL Comb Run (LL*L) 0.000ft	Max Upward Total Deflection	-0.009 in	Ratio =	32410

Support notation : Far left is #1 **Vertical Reactions - Unfactored** Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 38.150 111.577 96.809 106.834 37.978 24.665 58.299 71.753 24.665 D Only 71.753 L Only, LL Comb Run (***L) -0.136 0.818 -3.271 19.898 13.220 0.409 -2.453 17.445 16.627 -1.499 L Only, LL Comb Run (**L*) L Only, LL Comb Run (**LL) 0.273 -1.635 14.174 36.525 11.721 L Only, LL Comb Run (*L**) -1.810 20.078 21.065 -2.9620.494 16.935 L Only, LL Comb Run (*L*L) -1.947 20.895 17.794 13.713 L Only, LL Comb Run (*LL*) -1.401 17.625 38.510 13.665 -1.005 L Only, LL Comb Run (*LLL) -1.538 18.442 35.239 33.562 12.214 -0.145 13.441 21.955 -3.480 0.870 L Only, LL Comb Run (L***) L Only, LL Comb Run (L**L) 13.304 22.772 -6.751 20.768 13.075 13.850 19.501 13.964 17.497 -1.644 L Only, LL Comb Run (L*L*) L Only, LL Comb Run (L*LL) 13.713 20.319 10.693 37.395 11.576 L Only, LL Comb Run (LL**) 11.630 42.032 17.585 -2.092 0.349 11.494 42 850 14.314 17.806 13.568 L Only, LL Comb Run (LL*L) L Only, LL Comb Run (LLL*) 12.039 39.579 35.029 14.535 -1.150 L Only, LL Comb Run (LLLL) 11.903 40.397 31.758 34.432 12.069 37.742 D+L, LL Comb Run (***L) 24.517 72.639 54.783 91 982 D+L, LL Comb Run (**L*) 25.074 69.300 75.744 88.380 23.166 D+L, LL Comb Run (**LL) 24.995 69.776 73.933 106.155 37.333 D+L, LL Comb Run (*L**) 22.855 91.831 79.365 68.791 25.159 D+L, LL Comb Run (*L*L) 22.712 92.768 75.451 89.640 37.956 D+L, LL Comb Run (*LL*) 23.264 89.378 96.809 85.418 23.660 90.040 94.223 104.307 23.153 37.332 D+L, LL Comb Run (*LLL) D+L, LL Comb Run (L***) 38.005 93.947 54.631 72.681 24.510 D+L, LL Comb Run (L**L) 37.947 94.617 51.366 92.701 37.673 D+L, LL Comb Run (L*L*) 38.122 92.149 71.626 89.413 22.994 D+L, LL Comb Run (L*LL) 38.150 92.351 70.188 106.834 37.308 110.898 77.866 69.199 25.091 D+L, LL Comb Run (LL**) 37.585 D+L, LL Comb Run (LL*L) 37.550 111.577 74.239 89.824 37.978 94.685 D+L, LL Comb Run (LLL*) 37.593 109.348 85.976 23.567 D+L, LL Comb Run (LLLL) 37.622 109.663 92.523 104.501 37.387

Span # 2

Shear Stirrup Requirements

Between 0.00 to 4.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 5.40 to 13.80 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in Between 14.40 to 20.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 21.00 to 25.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 10.000 in Between 26.40 to 32.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 33.00 to 40.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 41.40 to 45.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 46.20 to 49.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 12.000 in Between 50.40 to 54.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 55.20 to 64.20 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in Between 64.80 to 69.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 69.60 to 74.40 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 10.000 in Between 75.00 to 81.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 82.20 to 90.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)			
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	-		
MAXimum BENDING Envelo	оре							
Span # 1	1	23.400	-305.27	649.56	0.47			
Span # 2	2	24.000	-352.01	649.56	0.54			

Printed: 15 SEP 2011, 12:51PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Girder	G1 (gridline	B)					
Load Combination		Location (ff)	В	ending Stress Result	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	72.000	-145.30	751.89	0.19		
Overall Maximum De	eflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L*)	1	0.0625	10.800	D+L, LL Comb Run (L*L*)	-0.0033	25.200
D+L, LL Comb Run (*L*L)	2	0.0291	13.200		0.0000	25.200
D+L, LL Comb Run (L*L*)	3	0.0261	10.800	D+L, LL Comb Run (*L*L)	-0.0078	20.400
D+L, LL Comb Run (*L*L)	4	0.0608	13.200		0.0000	20.400

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Concrete Beam

Load for Span Number 3

Load for Span Number 4

Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 24.0 ft, (Corridor LL) Uniform Load : L = 0.0420 ksf, Extent = 8.0 -->> 16.0 ft, Tributary Width = 24.0 ft, (Office LL)

Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (Office LL)

Printed: 15 SEP 2011, 12:51PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G2 (gridline C; fixed seating)

Project Notes :

Printed: 15 SEP 2011, 12:51PM
File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC INC 1983-2011 Build 6 11 9 9 Ver 6 11 9 9

Licensee : AHEARN & KNOX, 16

Description :	Girder G2 (gridline C; fixed seating)
---------------	---------------------------------------

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.841 : 1 Typical Section -369.18 k-ft 439.06 k-ft	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection	0.120 in Ratio = 3204 -0.073 in Ratio = 5289 0.181 in Ratio = 2118
Load Combination20D+0.50Lr+1.60L+1. Location of maximum on span Span # where maximum occurs	60H, LL Comb Run (*LL*) 0.000ft Span # 3	Max Upward Total Deflection	-0.028 m Ratio = 6791
Martha I Departieurs - Hafa stand		Support potation - For loft is #1	

Lad Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 34.529 124.971 108.545 82.567 37.310 D Only L2 Comb Run (""L) 0.099 0.434 -3.681 17.326 10.212 L Only, LL Comb Run (""L) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run (""L) -3.190 25.474 31.350 -8.393 0.039 L Only, LL Comb Run ("L") -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("L") -3.315 25.224 39.400 18.666 10.499 L Only, LL Comb Run (L"1) -3.315 25.224 39.400 18.666 10.499 L Only, LL Comb Run (L"1) -11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L"1) 11.031 19.404 -8.402 18.478 10.097 L Only, LL Comb Run (L"1) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb R	Vertical Readtions Officies	icu							
Owerall MAXimum 34 529 124 971 106 545 82 567 37 310 D Only, LL Comb Run (""L) 0.099 0.434 -3.681 17 326 10.212 L Only, LL Comb Run ("L) 0.055 -0.240 8 050 27 020 9 659 L Only, LL Comb Run ("L") -3.190 25 474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.055 24 800 43.061 1.300 0.286 L Only, LL Comb Run ("LL) -3.305 24 800 43.061 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L") -1.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.185 18.790 5.329 28.171 9.544 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.940 44.475 28.628 -7.124 0.724 L Only, LL Comb Run (LL) 7.940 <td>Load Combination</td> <td>Support 1</td> <td>Support 2</td> <td>Support 3</td> <td>Support 4</td> <td>Support 5</td> <td></td>	Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5			
D Only 22 211 84 361 63.586 54.369 26.609 L Only, LL Comb Run ("L') 0.154 -0.674 11.731 9.669 -0.553 L Only, LL Comb Run ("L') 0.155 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L') -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.243 39.400 18.626 10.499 L Only, LL Comb Run (L'L') 11.301 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L'L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L'L) 11.824 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L'L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.940 44.878 10.084 10.938 -0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 -0.724 <t< td=""><td>Overall MAXimum</td><td>34.529</td><td>124.971</td><td>108.545</td><td>82.567</td><td>37.310</td><td></td></t<>	Overall MAXimum	34.529	124.971	108.545	82.567	37.310			
L Only, LL Comb Run (""L) -0.099 0.434 -3681 77.326 10.212 L Only, LL Comb Run ("L) 0.154 -0.674 11.731 9.694 -0.553 L Only, LL Comb Run ("L) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L) -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL) -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.625 10.499 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.625 10.499 L Only, LL Comb Run ("LL) 11.131 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L) 11.131 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run ("L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("L) 19.406 10.8639 39.4061 61.991 37.310 D+L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run ("LL) 19.406 10.8723 108.545 53.993 D+L, LL Comb Run ("LL) 19.408 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.404 10.8773 108.545 53.993 D+L, LL Comb Run ("LL) 19.404 10.8773 108.545 53.993 D+L, LL Comb Run ("LL) 19.404 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.404 10.8770 10.503 77.1975 36.883 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 19.4475 97.666 43.696 27.765 D+L, LL Comb Run ("LL) 19.4441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("LL) 31.741 124.971 33.294 62.569 37.249 D+L, LL Comb Run ("LL) 31.741 124.971 33.294 62.569 37.249 D+L, LL Comb Run (LL) 31.909 124.446 10.461 54.186 27.113 D+L, LL Comb Run (LL) 31.909 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.909 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.909 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.909 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.909 124.446 108.401 54.186 27.113 D+L, LL Comb Run (LL) 31.90	D Only	22.211	84.361	63.586	54.369	26.609			
L Only, LL Comb Run ("L") 0.154 -0.674 11.731 9.684 -0.553 L Only, LL Comb Run ("L") 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L") -3.190 25.474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL) -3.135 25.24 490 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.24 4940 18.626 10.499 L Only, LL Comb Run (L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.485 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL) 7.841 44.678 24.948 10.084 10.936 L Only, LL Comb Run (LL) 7.841 44.678 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.940 44.457 24.6279 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("LL) 22.138 84.260 71.035 82.183 35.589 D+L, LL Comb Run ("LL) 19.965 108.770 105.388 71.975 36.883 D+L, LL Comb Run ("LL) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.4447 101.063 62.618 54.820 26.564 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 25.664 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 25.664 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 25.664 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 25.664 D+L, LL Comb Run ("LL) 19.4475 77.656 43.669 27.765 D+L, LL Comb Run ("LL) 19.4447 101.053 62.618 54.820 25.664 D+L, LL Comb Run ("LL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL) 31.909 124.446 10.473 10.841 54.186 27.113 D+L, LL Comb Run (LLL) 31.974 124.370 108.401 54.186 27.113 D+L, LL Comb Run (LLL) 31.974 124.371 108.401 54.186 27.113 D+L, LL Comb Run (LLL) 31.974 124.371 108.401 54.186 27.113 D+L, LL Comb Run (LLL) 31.974 124.471 108.401 54.186 27.113 D+L, LL Comb Run (LLL) 31.999 124.446 109.75 72.56 38.888	L Only, LL Comb Run (***L)	-0.099	0.434	-3.681	17.326	10.212			
L Comb, LL Comb Run ("LL) 0.055 -0.240 8.050 27.020 9.659 L Only, LL Comb Run ("L") -3.190 25.474 31.350 -8.393 0.839 L Only, LL Comb Run ("L") -3.025 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run ("LL) 11.31 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.941 44.478 28.628 -7.242 0.724 L Only, LL Comb Run (LLL) 7.954 44.043 66.79 19.778 10.383 D +L, LL Comb Run (LLL) 7.954 44.204 36.679 19.778 10.383 D +L, LL Comb Run (LLL) 7.955 44.204 36.679 19.778 10.383 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 18.922 109.053 94.061 661.991 37.310 D +L, LL Comb Run ("LL) 19.050 108.859 98.305 43.131 27.860 D +L, LL Comb Run ("LL) 19.042 108.627 394.305 32.97.166 D +L, LL Comb Run ("LL) 19.045 108.626 39.93 27.166 D +L, LL Comb Run ("LL) 19.140 108.723 108.545 53.993 27.166 D +L, LL Comb Run ("LL) 19.140 108.723 108.545 53.993 27.166 D +L, LL Comb Run ("LL) 19.140 108.723 108.545 53.993 27.166 D +L, LL Comb Run ("LL) 19.140 108.723 108.545 53.993 27.166 D +L, LL Comb Run ("LL) 19.144 101.444 58.244 73.263 36.362 D +L, LL Comb Run ("LL) 19.144 101.444 58.244 73.263 36.362 D +L, LL Comb Run ("LL) 19.144 101.444 58.244 73.263 36.362 D +L, LL Comb Run ("LL) 31.741 124.971 93.294 62.569 37.249 D +L, LL Comb Run ("LL) 31.944 124.575 77.55 D +L, LL Comb Run ("LL) 31.944 124.575 77.55 D +L, LL Comb Run ("LL) 31.944 124.575 77.55 D +L, LL Comb Run ("LL) 31.944 124.571 93.294 62.569 37.249 D +L, LL Comb Run ("LL) 31.944 124.575 77.55 D +L, LL Comb Run ("LL) 31.944 124.571 93.294 62.569 37.249 D +L, LL Comb Run ("LL) 31.944 124.571 93.294 62.569 37.249 D +L, LL Comb Run ("	L Only, LL Comb Run (**L*)	0.154	-0.674	11.731	9.694	-0.553			
L Only, LL Comb Run ("L") 3-190 25.474 31.350 8-393 0.839 L Only, LL Comb Run ("LL") 3-289 25.908 27.669 8.933 11.052 Only, LL Comb Run ("LL") 3-305 24.800 43.061 1.300 0.286 L Only, LL Comb Run ("LL") 3-135 25.234 39.400 18.626 10.499 L Only, LL Comb Run ("L") 11.130 18.971 -2.721 1.152 -0.115 D Only, LL Comb Run ("L") 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run ("L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L"L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L"L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.840 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LLL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.955 44.204 36.679 19.778 10.383 D+L, LL Comb Run (LLL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("TL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("TL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.771 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run	L Only, LL Comb Run (**LL)	0.055	-0.240	8.050	27.020	9.659			
L Only, LL Comb Run ("L") - 3.289 25.908 27.669 8.933 11.052 L Only, LL Comb Run ("LL") - 3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL") - 3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L"") 11.031 19.404 -6.402 18.478 10.997 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL") 7.940 44.457 24.948 10.084 10.936 L Only, LL Comb Run (LL") 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLT) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("LL) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.955 04.020 71.035 82.183 35.989 D+L, LL Comb Run ("LL) 19.955 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.905 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.905 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 19.905 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("LL) 34.487 101.063 62.616 54.820 26.564 D+L, LL Comb Run ("LL) 34.487 101.063 62.616 54.820 26.564 D+L, LL Comb Run ("LL) 34.487 101.063 62.616 54.820 26.564 D+L, LL Comb Run ("LL) 34.491 100.956 70.158 73.76 68.83 D+L, LL Comb Run ("LL) 34.491 100.956 70.158 73.568 D+L, LL Comb Run (LL") 34.491 100.956 70.158 73.568 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.992 124.446 104.758 72.568 35.988	L Only, LL Comb Run (*L**)	-3.190	25.474	31.350	-8.393	0.839			
L Only, LL Comb Run ("LL") -3.035 24.800 43.081 1.300 0.286 L Only, LL Comb Run ("LL") -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L"") 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L"L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L"L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L"L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL") 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.841 44.879 9.111 72.937 36.362 D-L, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D-L, LL Comb Run (""L) 22.159 84.759 59.111 72.937 36.362 D-L, LL Comb Run (""L) 22.213 84.260 71.035 82.183 35.989 D-L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D-L, LL Comb Run ("LL) 18.992 109.053 94.061 61.991 37.310 D-L, LL Comb Run ("LL") 19.140 108.770 105.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 101.63 62.618 54.820 25.664 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 771 15.038 71.975 36.883 D-L, LL Comb Run ("LL") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("LL") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.487 100.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.263 36.362 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.265 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.244 73.266 35.968 D-L, LL Comb Run ("L") 34.441 101.966 77.155 82.567 35.968 D-L, LL Comb Run ("L") 34.441 101.444 58.234 73.265 35.968 D-L, LL Comb Run ("L") 31.840 124.675 97.556 43.596 37.249 D-L, LL Comb Run ("L") 31.947 124.310 10.841 54.186 27.113 D-L, LL Comb Run (LLL) 31.949 124.416 104.758 72.205 36.585	L Only, LL Comb Run (*L*L)	-3.289	25.908	27.669	8.933	11.052			
L Conly, LL Comb Run ("LLL) -3.135 25.234 39.400 18.626 10.499 L Only, LL Comb Run (L**) 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L*L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L*L) 11.85 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L*L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*L) 7.955 44.204 36.679 10.778 10.383 D-t, LL Comb Run ("*L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("*L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("*L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*L) 19.955 10.859 99.8.055 43.131 27.860 D+L, LL Comb Run ("L*L) 19.955 10.859 99.8.305 43.131 27.860 D+L, LL Comb Run ("L*L) 19.905 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 19.040 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.046 108.723 108.545 53.993 27.166 D+L, LL Comb Run ("L*L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.949 124.340 134.4186 27.113 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.475 8	L Only, LL Comb Run (*LL*)	-3.035	24.800	43.081	1.300	0.286			
L Only, LL Comb Run (L***) 11.130 18.971 -2.721 1.152 -0.115 L Only, LL Comb Run (L**L) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L**L) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L**L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (L**L) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.941 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*) 7.951 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.94 83.290 75.204 64.110 26.051 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L) 19.1060 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (**L) 34.441 101.636 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.636 62.618 54.820 26.564 D+L, LL Comb Run (**L) 34.441 101.636 70.115 82.567 35.968 D+L, LL Comb Run (**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (**L) 31.940 108.567 70.155 82.567 35.968 D+L, LL Comb Run (**L) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.940 124.4675 97.656 43.696 27.7	L Only, LL Comb Run (*LLL)	-3.135	25.234	39.400	18.626	10.499			
L Only, LL Comb Run (L*t.) 11.031 19.404 -6.402 18.478 10.097 L Only, LL Comb Run (L*t.) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L*t.) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LL*t.) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL.) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run ("*t.) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run ("*t.) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run ("*t.) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run ("L*t.) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*t.) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run ("L*t.) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run ("*t.) 34.447 101.663 62.618 54.820 26.564 D+L, LL Comb Run ("L*t.) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run ("L*t.) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.467 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.416 104.758 72.205 36.858	L Only, LL Comb Run (L***)	11.130	18.971	-2.721	1.152	-0.115			
L Only, LL Comb Run (L*L*) 11.284 18.297 9.010 10.845 -0.668 L Only, LL Comb Run (L*L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL*) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (*L*) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.060 108.859 39.4.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.050 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (*L*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (*L*) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.441 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.941 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.940 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.941 124.971 93.294 62.569 37.249 D+L, LL Comb Run (L**) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.979 124.446 104.758 72.205 36.858	L Only, LL Comb Run (L**L)	11.031	19.404	-6.402	18.478	10.097			
L Only, LL Comb Run (L*L) 11.185 18.730 5.329 28.171 9.544 L Only, LL Comb Run (LL*') 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.060 108.859 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 34.447 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL) 31.999 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	L Only, LL Comb Run (L*L*)	11.284	18.297	9.010	10.845	-0.668			
L Only, LL Comb Run (LL**) 7.940 44.445 28.628 -7.242 0.724 L Only, LL Comb Run (LL*) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L**) 34.487 101.663 62.618 54.820 26.564	L Only, LL Comb Run (L*LL)	11.185	18.730	5.329	28.171	9.544			
L Only, LL Comb Run (LL*L) 7.841 44.878 24.948 10.084 10.936 L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (**L*) 19.100 108.723 108.545 53.993 27.166 D+L, LL Comb Run (**L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (L**) 31.974 124.971 93.294 62.569 37.249 D+L, LL Comb Run (Lt*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	L Only, LL Comb Run (LL**)	7.940	44.445	28.628	-7.242	0.724			
L Only, LL Comb Run (LLL*) 8.094 43.771 40.360 2.452 0.171 L Only, LL Comb Run (LLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L*) 22.243 84.260 71.035 82.183 35.989 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L*) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.481 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LL*) 31.979 124.446 104.758 72.205 36.858	L Only, LL Comb Run (LL*L)	7.841	44.878	24.948	10.084	10.936			
L Only, LL Comb Run (LLLL) 7.995 44.204 36.679 19.778 10.383 D+L, LL Comb Run (**L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**L) 22.213 84.260 71.335 82.183 35.989 D+L, LL Comb Run (*L) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L') 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL') 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL) 19.095 108.770 105.038 71.975 36.862 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L***) 34.491 100.956 77.155 82.567 35.968	L Only, LL Comb Run (LLL*)	8.094	43.771	40.360	2.452	0.171			
D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362 D+L, LL Comb Run (**L*) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**L) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 73.263 36.362 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*1) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L1**) 31.840 124.675 97.656 43.696 27.765	L Only, LL Comb Run (LLLL)	7.995	44.204	36.679	19.778	10.383			
D+L, LL Comb Run (**L*) 22.294 83.829 75.204 64.110 26.051 D+L, LL Comb Run (**LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*L*L) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LL*) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L*) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113	D+L, LL Comb Run (***L)	22.159	84.759	59.111	72.937	36.362			
D+L, LL Comb Run (**LL) 22.213 84.260 71.035 82.183 35.989 D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL*) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 <t< td=""><td>D+L, LL Comb Run (**L*)</td><td>22.294</td><td>83.829</td><td>75.204</td><td>64.110</td><td>26.051</td><td></td></t<>	D+L, LL Comb Run (**L*)	22.294	83.829	75.204	64.110	26.051			
D+L, LL Comb Run (*L**) 19.060 108.859 98.305 43.131 27.860 D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (*L**) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L***) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (**LL)	22.213	84.260	71.035	82.183	35.989			
D+L, LL Comb Run (*L*L) 18.992 109.053 94.061 61.991 37.310 D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*L**)	19.060	108.859	98.305	43.131	27.860			
D+L, LL Comb Run (*LL*) 19.140 108.723 108.545 53.993 27.166 D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L**L) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*L*) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*L*L)	18.992	109.053	94.061	61.991	37.310			
D+L, LL Comb Run (*LLL) 19.095 108.770 105.038 71.975 36.883 D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**L) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*LL*)	19.140	108.723	108.545	53.993	27.166			
D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564 D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*L) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (L**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL**) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (*LLL)	19.095	108.770	105.038	71.975	36.883			
D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362 D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L***)	34.487	101.063	62.618	54.820	26.564			
D+L, LL Comb Run (L*L*) 34.529 100.611 74.175 64.584 26.004 D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L**L)	34.441	101.444	58.234	73.263	36.362			
D+L, LL Comb Run (L*LL) 34.491 100.956 70.115 82.567 35.968 D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLL*) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L*L*)	34.529	100.611	74.175	64.584	26.004			
D+L, LL Comb Run (LL**) 31.840 124.675 97.656 43.696 27.765 D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858	D+L, LL Comb Run (L*LL)	34.491	100.956	70.115	82.567	35.968			
D+L, LL Comb Run (LL*L) 31.741 124.971 93.294 62.569 37.249 D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LL**)	31.840	124.675	97.656	43.696	27.765			
D+L, LL Comb Run (LLL*) 31.974 124.310 108.401 54.186 27.113 D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LL*L)	31.741	124.971	93.294	62.569	37.249			
D+L, LL Comb Run (LLLL) 31.909 124.446 104.758 72.205 36.858 Shear Stirrup Requirements	D+L, LL Comb Run (LLL*)	31.974	124.310	108.401	54.186	27.113			
Shear Stirrup Requirements	D+L, LL Comb Run (LLLL)	31.909	124.446	104.758	72.205	36.858			
	Shear Stirrup Requirements								
Between 0.00 to 3.60 ft PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stimuls spaced at 11.000 in	Between 0.00 to 3.60 ft PhiV $c/2 < V_1$	I <= PhiVo Re	a'd Vs = Min 11 F	563 use stirru	os spaced at 1	1 000 in			
Between 4.20 to 13.80 ft. Vu < PhiVc/2. Red Vs = Not Red, use stirrups spaced at 0.000 in	Between 4.20 to 13.80 ft. Vu < PhiVc	/2. Rea'd Vs =	Not Read. use s	tirrups spaced a	it 0.000 in	1.000 11			
Between 14.40 to 19.80 ft, PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 14.40 to 19.80 ft. PhiVc/ $2 < Vu <=$ PhiVc. Reg/d Vs = Min 11.5.6.3. use stirrups spaced at 11.000 in								
Between 20.40 to 28.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 5.000 in	Between 20.40 to 28.80 ft, PhiVc < V	'u, Req'd Vs = I	Min ^{11.5.6.3} , use	e stirrups spaced	d at 5.000 in				
Between 29.60 to 36.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 29.60 to 36.00 ft, PhiVc/2 <								
Between 36.80 to 44.00 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in	Between 36.80 to 44.00 ft, Vu < PhiV	/c/2, Req'd Vs =	Not Reqd, use	stirrups spaced	at 0.000 in				
Between 44.80 to 50.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 44.80 to 50.40 ft, PhiVc/2 <	Vu <= PhiVc, F	Req'd Vs = Min 1	rups spaced at	11.000 in				
Between 51.20 to 56.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 8.000 in	Between 51.20 to 56.80 ft, PhiVc < V	'u, Req'd Vs = I	Min 11.5.6.3, use	e stirrups spaced	d at 8.000 in				
Between 57.20 to 61.20 tt, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in	Between 57.20 to 61.20 ft, PhiVc/2 <	Vu <= PhiVc, F	Req'd Vs = Min 1	1.5.6.3, use stir	rups spaced at	11.000 in			
Between billou to bollou TI, Vu < PhilVc/2, Regid Vs = Not Regid, use stirrups spaced at U.000 in	Between 61.60 to 68.80 ft, Vu < PhiV	c/2, Req'd Vs =	Not Reqd, use	stirrups spaced	at 0.000 in	11 000 :			
Between 53.20 to 71.50 tt, PrivC/2 < Vu <= PrivC, Keg a Vs = Min 11.5.5.5, USS stirrups spaced at 11.000 in	Between 69.20 to 71.60 π, PhiVc/2 < Potween 72.00 to 72.60 ft $PhiVc < 10^{-1}$	vu <= PniVC, H	xeq a vs = Min 1	1.5.0.3, USE Still	rups spaced at	11.000 IN			
Detween 72.00 to 72.00 ti, $r = 10^{10} c/2 < V_U < = Det(0, E) C = Min (11.5.0.5) use sum ups spaced at (12.000 m)Between 73.00 to 70.80 ft Det/(0.2) C = Det/(0.2) C = Min (11.5.6.3) use sum operand at (11.000 m)$	Detween 12.00 to 12.00 it, PNIVC < V	u, rtequivs = l	viii 11.5.0.5, USE	surrups spaced	μαι 12.000 IN				
	Retween 73 20 to 79 80 ft $\frac{\text{Dhi}}{2}$	$V_{11} <= Phi V_{22}$	Rad'd V = Min 1	1563 use etir	rune enared at	11 000 in			

Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)	
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio	-
MAXimum BENDING Envel	ope					
Span # 1	. 1	23.400	-415.20	646.99	0.64	
Span # 2	2	24.000	-463.37	576.91	0.80	

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Gir	der G2 (gridline	D)					
Load Combination		Location (ft)	Be	ending Stress Results	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	85.800	121.61	474.11	0.26		
Overall Maximum	Deflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L	*L*)	1	0.0426	10.800	D+L, LL Comb Run (*L*L)	-0.0155	20.400
D+L, LL Comb Run (*	L*L)	2	0.2161	17.600	D+L, LL Comb Run (*L*L)	-0.0085	32.800
D+L, LL Comb Run (*	L*L)	3	0.0089	17.200	D+L, LL Comb Run (*L*L)	-0.0315	7.200
D+L, LL Comb Run (*	L*L)	4	0.0744	13.200		0.0000	7.200

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Concrete Beam

Printed: 15 SEP 2011, 12:52PM File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Lic. # : KW-06003381 Description : Girder G2 (gridline D)

Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (Assembly El Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL)

Load for Span Number 3

Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 8.0 ft, Tributary Width = 24.0 ft, (Corridor LL)

Uniform Load : L = 0.0450 k/ft, Extent = 8.0 -->> 16.0 ft, Tributary Width = 1.0 ft, (Office LL)

Load for Span Number 4

Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (Office LL)

Lic. # : KW-06003381

Girder G2 (gridline D) Description :

DESIGN SUMMARY				Desigi	ו OK	
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination 20D+0.50Lr+1.60L+1.60 Location of maximum on span Span # where maximum occurs	0.894 : 1 Typical Section -392.60 k-ft 439.06 k-ft 0H, LL Comb Run (*LL*) 0.000ft Span # 3	Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection	0.155 in -0.072 in 0.216 in -0.032 in	Ratio = Ratio = Ratio = Ratio =	2481 5354 1776 6086	

Load Combination Support 1 Support 2 Support 3 Support 4 Support 5 Overall MAXimum 34.517 129.909 112.925 76.522 37.528 D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
Overall MAXimum 34.517 129.909 112.925 76.522 37.528 D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
D Only 22.211 84.361 63.586 54.369 26.609 L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
L Only, LL Comb Run (***L) -0.099 0.434 -3.681 17.326 10.212
L Only, LL Comb Run (**L*) 0.108 -0.474 9.797 3.513 -0.296
L Only, LL Comb Run (**LL) 0.009 -0.041 6.117 20.839 9.916
L Only, LL Comb Run (*L**) -3.774 30.144 37.097 -9.932 0.993
L Only, LL Comb Run (*L*L) -3.873 30.578 33.416 7.394 11.205
L Only, LL Comb Run (*LL*) -3.666 29.670 46.894 -6.420 0.697
L Only, LL Comb Run (*LLL) -3.765 30.104 43.213 10.906 10.909
L Only, LL Comb Run (L***) 11.130 18.971 -2.721 1.152 -0.115
L Only, LL Comb Run (L**L) 11.031 19.404 -6.402 18.478 10.097
L Only, LL Comb Run (L*L*) 11.238 18.496 7.076 4.664 -0.411
L Only, LL Comb Run (L*LL) 11.139 18.930 3.395 21.990 9.801
L Only, LL Comb Run (LL**) 7.356 49.115 34.376 -8.780 0.878
L Only, LL Comb Run (LL*L) 7.257 49.549 30.695 8.546 11.090
L Only, LL Comb Run (LLL*) 7.464 48.640 44.173 -5.268 0.582
L Only, LL Comb Run (LLLL) 7.365 49.074 40.492 12.058 10.794
D+L, LL Comb Run (***L) 22.159 84.759 59.111 72.937 36.362
D+L, LL Comb Run (**L*) 22.263 83.999 73.294 57.918 26.309
D+L, LL Comb Run (**LL) 22.196 84.412 69.017 76.172 36.179
D+L, LL Comb Run (*L**) 18.191 114.026 103.990 41.343 28.113
D+L, LL Comb Run (*L*L) 18.140 114.157 99.805 60.226 37.528
D+L, LL Comb Run (*LL*) 18.258 113.845 112.925 45.582 27.703
D+L, LL Comb Run (*LLL) 18.228 113.884 109.103 64.048 37.240
D+L, LL Comb Run (L***) 34.487 101.063 62.618 54.820 26.564
D+L, LL Comb Run (L**L) 34.441 101.444 58.234 73.263 36.362
D+L, LL Comb Run (L*L*) 34.517 100.745 72.293 58.382 26.263
D+L, LL Comb Run (L*LL) 34.476 101.102 68.122 76.522 36.170
D+L, LL Comb Run (LL**) 30.957 129.726 103.781 41.580 28.037
D+L, LL Comb Run (LL*L) 30.883 129.909 99.567 60.443 37.470
D+L, LL Comb Run (LLL*) 31.029 129.570 112.628 45.862 27.638
D+L, LL Comb Run (LLLL) 30.985 129.618 108.922 64.170 37.225
Shear Stirrup Requirements
Between 0.00 to 3.60 ft, PhiVc/2 < Vu <= PhiVc, Reg'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in
Between 4.20 to 13.80 ft, Vu < PhiVc/2, Reg'd Vs = Not Regd, use stirrups spaced at 0.000 in
Between 14.40 to 19.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in
Between 20.40 to 29.60 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 4.000 in
Between 30.40 to 36.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Between 44.80 to 49.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 50.40 to 56.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 6.000 in Between 57.20 to 61.20 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 61.60 to 69.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 70.00 to 71.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 72.00 to 72.00 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 12.000 in Between 72.60 to 79.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 80.40 to 90.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 91.20 to 95.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Result	s (k-ft)
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envel	оре				
Span # 1	· 1	23.400	-437.09	646.99	0.68
Span # 2	2	24.000	-485.82	576.91	0.84

Dsgnr: Project Desc.:

Title : Cupertino City Hall

Project Notes :

Licensee : AHEARN & KNOX, INC

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9 Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Gir	der G2 (gridline	D)					
Load Combination		Location (ft)	Be	ending Stress Results	s (k-ft)		
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio		
Span # 4	4	85.800	121.61	474.11	0.26		
Overall Maximum	Deflections	- Unfactor	ed Loads				
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L	*L*)	1	0.0426	10.800	D+L, LL Comb Run (*L*L)	-0.0155	20.400
D+L, LL Comb Run (*	L*L)	2	0.2161	17.600	D+L, LL Comb Run (*L*L)	-0.0085	32.800
D+L, LL Comb Run (*	L*L)	3	0.0089	17.200	D+L, LL Comb Run (*L*L)	-0.0315	7.200
D+L, LL Comb Run (*	L*L)	4	0.0744	13.200		0.0000	7.200

Concrete Beam

Title : Cupertino City Hall Dsgnr: Project Desc.:

Project Notes :

Lic. # : KW-06003381 Description : Girder G3 (gridline E) **Material Properties** Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05 3.50 ksi 0.90 fc $fr = fc^{1/2} * 7.50$ 443.71 psi = 0.750 Shear : Ψ Density 145.0 pcf = 0.850 β_1 λ LtWt Factor = 1.0 3,372.17 ksi Elastic Modulus = Fy - Stirrups 40.0 ksi 29,000.0 ksi E - Stirrups = fy - Main Rebar = 40.0 ksi # 3 Stirrup Bar Size # = 29.000.0 ksi E - Main Rebar = 2 Number of Resisting Legs Per Stirrup = Load Combination 2009 IBC & ASCE 7-05 64 ir 456 16" w x 36" h Span=24.0 ft 16" w x 36" h Span=24.0 ft 16" w x 36" h Span=24.0 ft **Cross Section & Reinforcing Details** Tee Section, Stem Width = 16.0 in, Total Height = 36.0 in, Top Flange Width = 64.0 in, Flange Thickness = 3.0 in Span #1 Reinforcing.... 1-#8 at 3.0 in from Bottom, from 0.0 to 19.0 ft in this span 2-#11 at 3.0 in from Bottom, from 0.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 8.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Top, from 18.0 to 24.0 ft in this span Span #2 Reinforcing.... 2-#11 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span 1-#8 at 3.0 in from Bottom, from 2.0 to 22.0 ft in this span 2-#11 at 3.0 in from Bottom. from 18.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top. from 0.0 to 16.0 ft in this span 1-#8 at 3.0 in from Top, from 0.0 to 6.0 ft in this span 2-#11 at 3.0 in from Top, from 8.0 to 24.0 ft in this span Span #3 Reinforcing.... 2-#11 at 3.0 in from Bottom, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Bottom, from 4.0 to 24.0 ft in this span 2-#11 at 3.0 in from Top, from 0.0 to 24.0 ft in this span 1-#8 at 3.0 in from Top, from 0.0 to 6.0 ft in this span Service loads entered. Load Factors will be applied for calculations. Applied Loads Loads on all spans... D = 0.10 Uniform Load on ALL spans : D = 0.10 ksf, Tributary Width = 24.0 ft Load for Span Number 1 Uniform Load : L = 0.0640 ksf, Tributary Width = 12.0 ft, (corridor LL) Uniform Load : L = 0.0420 ksf, Tributary Width = 12.0 ft, (office LL) Uniform Load : D = 0.0380 ksf, Extent = 0.0 -->> 14.0 ft, Tributary Width = 12.0 ft, (addl slab DL) Point Load : D = 2.60 k @ 14.0 ft Load for Span Number 2 Uniform Load : L = 0.0640 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 12.0 ft, (corridor LL) Uniform Load : L = 0.0420 ksf, Extent = 16.0 -->> 24.0 ft, Tributary Width = 24.0 ft, (office LL) Uniform Load : L = 0.0420 ksf, Extent = 0.0 -->> 16.0 ft, Tributary Width = 12.0 ft, (office LL) Load for Span Number 3 Uniform Load : L = 0.0420 ksf, Tributary Width = 24.0 ft, (office LL) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.997:1 Maximum Deflection Max Downward L+Lr+S Deflection 0.043 in Ratio = Section used for this span Typical Section Max Upward L+Lr+S Deflection -0.041 in Ratio = Mu : Applied 118.47 k-ft Max Downward Total Deflection 0.081 in Ratio = Mn * Phi : Allowable 118.80 k-ft Max Upward Total Deflection -0.017 in Ratio = Load Combinatiefh.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*L*) 12.200ft Location of maximum on span Span # where maximum occurs Span # 2

Printed: 15 SEP 2011, 12:52PM

μ

6648

6969

3572

16621

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6
ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9
Licensee : AHEARN & KNOX, INC

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 enercalc.ec6

ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver:6.11.9.9

Licensee : AHEARN & KNOX, INC

Project Notes :

Concrete Beam

Lic. # : KW-06003381

Description : Girder G3 (gridline E)

Vertical Reactions - Unfact	tored		5	Support notation : Far left is #	<i>‡</i> 1	
Load Combination	Support 1	Support 2	Support 3	Support 4		
Overall MAXimum	40.666	103.500	92.137	34.360		
D Only	27.966	68.266	62.342	23.210		
L Only, LL Comb Run (**L)	0.403	-2.419	15.725	10.483		
L Only, LL Comb Run (*L*)	-1.470	16.434	14.870	-1.418		
L Only, LL Comb Run (*LL)	-1.067	14.015	30.595	9.065		
L Only, LL Comb Run (L**)	13.229	19.843	-3.053	0.509		
L Only, LL Comb Run (L*L)	13.632	17.424	12.672	10.992		
L Only, LL Comb Run (LL*)	11.758	36.278	11.817	-0.909		
L Only, LL Comb Run (LLL)	12.162	33.858	27.542	9.574		
D+L, LL Comb Run (**L)	28.375	65.818	78.111	33.673		
D+L, LL Comb Run (*L*)	26.550	84.579	77.292	21.778		
D+L, LL Comb Run (*LL)	26.815	82.807	92.137	32.632		
D+L, LL Comb Run (L**)	40.558	89.547	58.323	23.883		
D+L, LL Comb Run (L*L)	40.666	87.714	73.764	34.360		
D+L, LL Comb Run (LL*)	40.193	103.500	74.841	22.194		
D+L, LL Comb Run (LLL)	40.274	101.926	89.845	32.876		

Shear Stirrup Requirements

Between 0.00 to 5.40 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 5.60 to 13.80 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 14.00 to 20.00 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 20.20 to 25.80 ft, PhiVc < Vu, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 9.000 in Between 26.00 to 31.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 31.80 to 40.60 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 40.80 to 46.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 46.80 to 49.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 56.80 to 56.60 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in Between 56.80 to 67.40 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 67.60 to 71.80 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 11.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bendin	g Stress Resul	ts (k-ft)
Segment Length	Span #	in Span	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Enve	lope				
Span # 1	. 1	23.800	-304.88	367.89	0.83
Span # 2	2	36.200	118.47	118.80	1.00
Span # 3	3	48.000	-277.39	367.89	0.75
+1.40D					
Span # 1	1	23.800	-205.60	367.89	0.56
Span # 2	2	47.800	-180.07	296.54	0.61
Span # 3	3	48.000	-187.83	367.89	0.51
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	23.800	-160.88	367.89	0.44
Span # 2	2	47.800	-215.64	296.54	0.73
Span # 3	3	48.000	-222.93	367.89	0.61
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	23.800	-232.22	367.89	0.63
Span # 2	2	36.200	118.47	118.80	1.00
Span # 3	3	48.000	-215.46	367.89	0.59
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	23.800	-216.87	367.89	0.59
Span # 2	2	47.800	-265.82	296.54	0.90
Span # 3	3	48.000	-277.39	367.89	0.75
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	10.000	274.14	399.60	0.69
Span # 2	2	24.000	-263.59	367.89	0.72
Span # 3	3	48.000	-141.46	367.89	0.38
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	10.200	280.63	399.60	0.70
Span # 2	2	24.000	-248.11	367.89	0.67
Span # 3	3	61.800	229.76	399.60	0.57
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	23.800	-304.88	367.89	0.83
Span # 2	2	24.000	-320.05	367.89	0.87
Span # 3	3	48.000	-195.92	367.89	0.53
+1.20D+0.50Lr+1.60L+1.60	0H, LL Comb				
Span # 1	1	23.800	-289.52	367.89	0.79
Span # 2	2	47.800	-247.10	296.54	0.83
Concrete Beam

Lic. # : KW-06003381 Description : Girder G3 (gridline E)

Printed: 15 SEP 2011, 12:52PM

File: P:\Cupertino\M11-040 City Hall Analysis\Calcs\m11-040 encrat.ec6 ENERCALC, INC. 1983-2011, Build:6.11.9.9, Ver.6.11.9.9 Licensee : AHEARN & KNOX, INC

Load Combination			Bending Stress Results (k-ft)					
Segment Length	Span #	in Span	Mu : Ma	x Phi*Mnx	Stress Ratio	-		
Span # 3	3	48.000	-257.85	367.89	0.70			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	23.800	-160.88	367.89	0.44			
Span # 2	2	47.800	-215.64	296.54	0.73			
Span # 3	3	48.000	-222.93	367.89	0.61			
+1.20D+1.60L+0.50S+1.60H,		00.000	000.00	207.00	0.02			
Span # 1	1	23.800	-232.22	307.89	0.63			
Span # 3	2	18 000	215.46	367.80	0.50			
1 20D+1 60L+0 50S+1 60H		40.000	-213.40	307.09	0.59			
Snan # 1	1	23 800	-216 87	367 89	0.59			
Span # 2	2	47 800	-265.82	296 54	0.00			
Span # 3	3	48.000	-277.39	367.89	0.75			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	10.000	274.14	399.60	0.69			
Span # 2	2	24.000	-263.59	367.89	0.72			
Span # 3	3	48.000	-141.46	367.89	0.38			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R							
Span # 1	1	10.200	280.63	399.60	0.70			
Span # 2	2	24.000	-248.11	367.89	0.67			
Span # 3	3	61.800	229.76	399.60	0.57			
+1.20D+1.60L+0.50S+1.60H,	LL Comb R	00.000	004.00	007.00	0.00			
Span # 1	1	23.800	-304.88	367.89	0.83			
Span # 2	2	24.000	-320.05	367.89	0.87			
	ა II Comh D	40.000	-195.92	307.09	0.55			
+1.20D+1.00L+0.303+1.00H, Span # 1		23 800	-280 52	367 80	0.70			
Span # 2	2	47 800	-209.32	296 54	0.79			
Span # 3	3	48 000	-257.85	367.89	0.00			
+1 20D+1 60Lr+0 50L LL Cor	nb Run (*	40.000	201.00	001.00	0.70			
Span # 1	1	23.800	-171.43	367.89	0.47			
Span # 2	2	47.800	-173.50	296.54	0.59			
Span # 3	3	48.000	-180.35	367.89	0.49			
+1.20D+1.60Lr+0.50L, LL Cor	nb Run (*							
Span # 1	1	23.800	-193.73	367.89	0.53			
Span # 2	2	47.800	-170.03	296.54	0.57			
Span # 3	3	48.000	-178.02	367.89	0.48			
+1.20D+1.60Lr+0.50L, LL Cor	nb Run (*							
Span # 1	1	23.800	-188.93	367.89	0.51			
Span # 2	2	47.800	-189.18	296.54	0.64			
Span # 3	3	48.000	-197.37	367.89	0.54			
+1.20D+1.60Lf+0.50L, LL Cof	nd Run (L	22 000	100 02	267.00	0.54			
Span # 2	2	23.000	-190.93	307.09	0.54			
Span # 2 Span # 3	2	48 000	-209.00	367.89	0.37			
+1 20D+1 60Lr+0 50L LL Cor	nh Run <i>(</i> I	40.000	-104.00	007.00	0.42			
Span # 1	1	23 800	-194 14	367 89	0.53			
Span # 2	2	47.800	-167.65	296.54	0.57			
Span # 3	3	48.000	-174.25	367.89	0.47			
+1.20D+1.60Lr+0.50L, LL Cor	nb Run (L							
Span # 1	1	23.800	-216.43	367.89	0.59			
Span # 2	2	24.000	-227.51	367.89	0.62			
Span # 3	3	48.000	-171.91	367.89	0.47			
+1.20D+1.60Lr+0.50L, LL Cor	nb Run (L							
Span # 1	1	23.800	-211.63	367.89	0.58			
Span # 2	2	47.800	-183.33	296.54	0.62			
Span # 3	3	48.000	-191.27	367.89	0.52			
Overall Maximum Deflections - Unfactored Loads								
Load Combination		Span	Max. "-" Defl	Location in Span	Load Combination	ation	Max. "+" Defl	Location in Span
D+L, LL Comb Run (L*L)		1	0.0806	10.200	D+L, LL Co	mb Run (L*L)	-0.0029	24.600
D+L, LL Comb Run (L*L)		2	0.0027	24.600	D+L, LL Co	mb Run (L*L)	-0.0173	9.000
D+L, LL Comb Run (L*L)		3	0.0519	12.600			0.0000	9.000