

PHASE II ENVIRONMENTAL SITE ASSESSMENT

MADERA DRIVE PROPERTY 10621 MADERA DRIVE CUPERTINO, CA 95014

Project Number 2025-01-004

This document was prepared for use only by the client, only for the purposes stated, and within a reasonable time from issuance. Non-commercial, educational, and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. The reprint must acknowledge the copyright and indicate that permission to reprint has been received.

PHASE II ENVIRONMENTAL SITE ASSESSMENT TABLE OF CONTENTS

1.	INTRODUCTION	3
	Site History	3
2.	TOPOGRAPHY AND HYDROLOGY	4
	Topography	4
	Groundwater	4
3.	SOILS AND GEOLOGY	4
	Soils	4
	Geology	4
4.	PHASE II ENVIRONMENTAL SITE ASSESSMENT	5
	Previous Environmental Investigation	5
	Statement of Objectives	6
	Conceptual Site Model	7
	Pre-field Activities	7
	Sampling Strategy and Locations	7
	Sample Collection Methods	8
	January 23, 2025 sampling event	8
	February 12, 2025 sampling event	9
	Laboratory Results	9
5.	DISCUSSION AND OPINION	. 16
	Chlordane (technical)	. 16
	p,p-DDT	. 16
	p,p-DDE	. 17
	Dieldrin	. 17
	Toxaphene	. 17
6.	CONCLUSIONS AND RECOMMENDATIONS	. 18
7.	SPECIAL TERMS AND CONDITIONS	. 19
	User Reliance	. 19
	Limitations	. 19
8.	PROFESSIONAL SIGNATURE	. 21

APPENDIX

- Plates
- Analytical Results
- HASP

Ben Engelman 11652 Bridge Park Ct., Cupertino, CA 95014 (408) 891-8396 Larome.ben@gmail.com

Subject: Phase II Environmental Site Assessment for

> Madera Drive Property 10621 Madera Drive Cupertino, CA 95014

APN: 32535061

1. INTRODUCTION

As requested, Enviro Assessment, PC (Enviro Assessment) has prepared a Phase II Environmental Site Assessment (ESA) for 10621 Madera Drive, Cupertino, CA 95014. The Subject Property is identified by its APN as 30326074. The purpose of the Phase II ESA was to evaluate the soil of the Subject Property for impacts from the past orchard usage. The western portion of the Subject Property was an orchard between approximately 1948 to 1954. Orchards in this time period commonly used organochlorine pesticides (OCPs).

Site History

According to the previous Phase I ESA, dated December 7, 2023, based on the aerial photos, topographic maps, and City Directory listings of the Subject Property, in addition to information obtained while conducting interviews, the Subject Property was developed with the present-day residential structure sometime around 1958. Prior to the development of the original structure, the Subject Property existed as an orchard, dating back to the first located aerial photograph from 1948. Historical use of the Subject Property includes, but is not limited to, an orchard and residential property. The orchards were considered a REC and sampling for OCPs was recommended. In addition, the possibility of OCPs having been applied around the foundation is also elevated due to the age of the structure. Therefore, this is also a REC.

2. TOPOGRAPHY AND HYDROLOGY

Topography

According to the most recent USGS Topographic map covering the Subject Property and vicinity, the majority of the Subject Property is slightly sloped to the northeast with the southwest corner sloping to the southwest. The Subject Property lies between approximately 260 and 300 feet above mean sea-level.

Groundwater

Historical records retrieved from nearby monitoring wells identified water at approximately 30 to 50 feet below ground surface¹. Actual groundwater was not encountered due to the shallow nature of the investigation.

3. SOILS AND GEOLOGY

Soils

According to ERIS PSR, the Subject Property is mapped as either Urban Land-Flaskan complex, 0 to 2 percent slopes or Urbanland-Landelspark complex, 0 to 2 percent slopes. These soils are well drained and not flooded. These soils do not meet hydric criteria. Soils encountered at the site are represented in Plate A4, which is located in the Appendix².

Geology

According to the Geological Map of California, the Subject Property is located within the Qoa: Older Alluvial terrace gravel, sand and clay, undeformed," as mapped by Thomas W. Dibblee, Jr., 2007³.

¹ https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/

²https://websoilsurvey.nrcs.usda.gov/app/

https://ngmdb.usgs.gov/mapview/?center=-97,39.6&zoom=4

4. PHASE II ENVIRONMENTAL SITE ASSESSMENT

This additional Phase II ESA is based on the previous Phase I ESA and initial screening level Phase II ESA.

- The Phase I ESA, dated December 7, 2023 Corrected March 11, 2025, was produced by Enviro Assessment, PC.
- The initial screening level Phase II ESA, dated December 20, 2023, was produced by Enviro Assessment PC.

This additional Phase II ESA was produced to provide additional delineation investigations and methodology based on the initial screening results.

Previous Environmental Investigation

The initial screening level Phase II ESA was conducted on December 13, 2023. Four (4) shallow boreholes were advanced onsite. The boreholes were advanced with a hand trowel to depths of four to six inches (4-6") below the ground surface. The locations were randomly picked. The Subject Property was divided into four sections, and one sample was collected from each section.

The collected surface soil samples were sampled for arsenic and OCPs. Arsenic was compared to the upper limit of typical background levels for the area and was considered within typical background levels. DDE, DDT, Dieldrin, and Toxaphene were detected in some of the soils sampled. The Analytical Results were compared to the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for each chemical for residential soil. Analytical Results with the DTSC-SL comparison are listed below:

Table 1. Initial Sampling for OCPs and Arsenic (12/13/2023)

Analyte	S-1	S-2	S-3	S-4	DTSC-SL
	mg/kg	mg/kg	mg/kg	mg/kg	(mg/kg)
Aldrin	ND	ND	ND	ND	0.039
a-BHC	ND	ND	ND	ND	
b-BHC	ND	ND	ND	ND	
d-BHC	ND	ND	ND	ND	
g-BHC	ND	ND	ND	ND	

Analyte	S-1	S-2	S-3	S-4	DTSC-SL
	mg/kg	mg/kg	mg/kg	mg/kg	(mg/kg)
Chlordane	ND	ND	0.57	0.15	1.7
(technical)					
a-Chlordane	0.13	0.012	0.043	0.016	
g-Chlordane	0.30	0.016	0.034	0.011	
p,p-DDD	0.30	0.0050	ND	ND	2.3
p,p-DDE	16	0.31	0.47	0.11	2
p,p-DDT	7.3	0.090	0.22	0.062	1.9
Dieldrin	0.18	ND	0.017	0.0040	0.034
Endosulfan I	0.12	ND	ND	0.0029	450
Endosulfan II	ND	ND	ND	ND	
Endosulfan	ND	ND	ND	0.0027	380
Sulfate					
Endrin	ND	ND	ND	ND	19
Endrin	ND	0.016	ND	ND	
aldehyde					
Endrin ketone	ND	ND	ND	ND	
Heptachlor	ND	ND	ND	ND	0.13
Heptachlor	ND	ND	ND	ND	0.07
epoxide					
Hexachloro-	ND	ND	ND	ND	0.19
benzene					
Hexachloro-	ND	ND	ND	ND	
cyclopentadiene					
Methoxychlor	ND	ND	ND	ND	320
Toxaphene	ND	ND	1.1	ND	0.45
METALS					
Arsenic	6.4	7.8	5.4	5.1	11*

ND = not detected in sample analyzed (below method detection limit)

Red = Above DTSC-SL Limits

Statement of Objectives

This additional Phase II ESA is intended to address the Subject Property's prior use as an orchard and possible OCP impacts around the foundation of the residence. It is designed to identify if the near surface soil is impacted by OCPs, lead and/or arsenic. To save upfront costs, the initial screening level Phase II ESA evaluated the surface soils only. This additional Phase II ESA discusses the two additional investigations that were conducted to determine the impacts around the foundation of the residence and the depth and dimensions of the impacts around the original sample S-1 (the highest level of impacts from the screening level Phase II).

^{* =} Arsenic set at 11 mg/kg – see discussion on Arsenic.

Conceptual Site Model

Elevated levels of OCPs were identified on the surface of the Subject Property from the past use of the site as an orchard. Additional sampling was conducted to identify width and depth of the impacts around the most impacted sample (sample S-1). The site also included a residential structure. The soils around the foundation of the residential structure are suspected of containing elevated levels of OCPs due to spraying for pest control in the past. This area was also tested for lead due to the likely past use of lead-based paint on the exterior of the residence.

Four step-out locations were identified for sampling around the original sample S-1. Additionally, a deeper sample was collected at the location of S-1(2' depth). Four deeper (3' and 4' depth) sample locations were identified for sampling in the area of sample S-1. Eight sample locations were identified for analysis around the foundation of the residence. One sample location on each side of the residence and one additional location as a step-out from the first sample location. The samples around the foundation were analyzed for OCPs and lead.

Pre-field Activities

Prior to start of work, a brief "tailgate safety meeting" was conducted to inform the field crew of anticipated hazards and the emergency action plan for the site. A Health and Safety Plan was developed, reviewed prior to field activities and is attached in the Appendix.

Sampling Strategy and Locations

This additional Phase II ESA is intended to address the Subject Property's prior impacts as an orchard. Additionally, the area around the residence will be evaluated for the presence of OCPs and lead in the soil from lead-based paint. OCPs were used as a termiticide in residential homes in California until 1988. Of the sites evaluated by DTSC, 70 percent of the residences constructed prior to 1989 had OCP concentrations that exceeded RSLs and/or DTSC SLs and required further investigation and/or remedial action.

The work will include taking soil samples from shallow boreholes excavated using a hand-augur or stainless-steel trowel to a depth of up to two feet (2' bgs). Deeper samples will utilize a minibackhoe to excavate the test pit to the desired depth, and then a sample will be collected using a

stain-less steel trowel.

Rational for Soil Boring Location Placement

The additional Phase II ESA is designed based on the results of the initial screening Phase II ESA. Step-out locations from the elevated sample S-1 were identified. These step-out locations were chosen to help identify the extent of the elevated levels around sample S-1. Additional locations were chosen around sample S-1 to identify the depth of the impacts. Additionally, sample locations on each side of the residence were identified for sampling and analysis. Step-out locations from each of those samples were also taken.

Please refer to Plate B1 and B2 for the sample location maps. Please see Tables 2, 3 and 4, below, for laboratory results.

Sample Collection Methods

Two sampling events occurred as part of this investigation.

January 23, 2025 sampling event

The first sampling event occurred on January 23, 2025. Thirteen (13) boreholes were advanced onsite. Eight (8) of those boreholes were located around the foundations of the residential structure at the Subject Property. The boreholes were advanced with a hand-augur to depths between six inches to two feet below the ground surface (6"-2" bgs) and two samples were collected in each borehole by the environmental professional. Samples were collected at the 6-inch depth and two foot depth. Two duplicate samples were collected as part of the QA/QC for this project, and are labeled as "Dup". Samples were collected from the desired strata and placed into laboratory approved containers, capped, and labeled. All samples were observed for contamination. The selected samples were immediately placed on ice and transported under chain of custody to McCampbell Analytical, Inc. in Pittsburg, CA for final analysis.

Ten soil samples were analyzed for OCPs and arsenic. Eighteen samples were analyzed for OCPs and lead. Quality assurance and quality control (QA/QC) samples as a duplicate sample were used in this project and are labelled as "Dup".

February 12, 2025 sampling event

These test pit locations were chosen to investigate the depth of the OCP impacts near and around sample S-1. The test pits were advanced with a mini-backhoe to depths between three to four feet below the ground surface (3'-4' bgs) and two samples were collected in each test pit by the environmental professional. Samples were collected at three-foot depth and four-foot depth. One duplicate sample was collected as part of the QA/QC for this project and was labeled as "Dup". Samples were collected from the desired strata and placed into laboratory approved containers, capped, and labeled. All samples were observed for contamination. The selected samples were immediately placed on ice and transported under chain of custody to McCampbell Analytical, Inc. in Pittsburg, CA for final analysis.

Nine soil samples were analyzed for OCPs and arsenic. Quality assurance and quality control (QA/QC) samples as a duplicate sample were used in this project and are labelled as "Dup".

Laboratory Results

The tables below present the laboratory results as reported by McCampbell Analytical, Inc. in Pittsburg, CA. Complete laboratory results are attached. The HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) were reviewed for each chemical for soil being used for residential purposes. Screening Levels provide a risk-based determination of environmental concerns on a potentially contaminated property. Note that the lab reports concentrations of mg/kg. The samples are summarized in the following tables.

Table 2. Step out Sampling From S-1 - OCPs and Arsenic (1-23-2025)

Analyte	S-1- 1@6" mg/kg	S-1- 1@2' mg/kg	S-1- 2@6" mg/kg	S-1- 2@2' mg/kg	S-1- 3@6" mg/kg	S-1- 3@2' mg/kg	S-1- 4@6" mg/kg	S-1- 4@2' mg/kg	S-1@2' mg/kg	S-1-3@6" (dup) mg/kg	DTSC-SL (mg/kg)
Aldrin	ND	ND	ND	0.039							
a-BHC	ND	ND	ND								
b-BHC	ND	ND	ND								
d-BHC	ND	ND	ND								
g-BHC	ND	ND	ND								
Chlordane (technical)	ND	ND	ND	ND	0.22	ND	ND	ND	ND	0.18	1.7
a-Chlordane	0.0028	ND	0.0072	0.0010	0.015	0.0019	0.0014	ND	0.045	0.013	
g-Chlordane	0.0036	0.0013	0.012	0.0011	0.024	0.0031	0.0017	ND	0.057	0.019	
p,p-DDD	0.0068	0.0020	ND	ND	ND	ND	0.0013	ND	0.055	0.010	2.3
p,p-DDE	0.38	0.10	0.27	0.074	0.065	0.0082	0.044	0.0079	1.8	0.058	2
p,p-DDT	0.11	0.026	0.085	0.015	0.070	0.010	0.019	0.0013	0.61	0.059	1.9
Dieldrin	ND	ND	ND	ND	0.0084	0.0010	ND	ND	0.063	0.0072	0.034
Endosulfan I	ND	ND	ND	450							
Endosulfan II	ND	ND	ND								
Endosulfan Sulfate	ND	ND	ND	380							
Endrin	ND	ND	ND	19							
Endrin aldehyde	ND	ND	ND	ND	0.0058	ND	ND	ND	ND	ND	
Endrin ketone	ND	ND	ND								
Heptachlor	ND	ND	ND	0.13							
Heptachlor epoxide	ND	ND	ND	0.07							

Analyte	S-1- 1@6" mg/kg	S-1- 1@2' mg/kg	S-1- 2@6" mg/kg	S-1- 2@2' mg/kg	S-1- 3@6" mg/kg	S-1- 3@2' mg/kg	S-1- 4@6" mg/kg	S-1- 4@2' mg/kg	S-1@2' mg/kg	S-1-3@6" (dup) mg/kg	DTSC-SL (mg/kg)
Hexachloro- benzene	ND	ND	ND	0.19							
Hexachloro- cyclopentadiene	ND	ND	ND								
Methoxychlor	ND	ND	ND	ND	ND	0.0015	ND	ND	ND	ND	320
Toxaphene	ND	ND	ND	0.45							
METALS											
Arsenic	7.7	4.7	6.2	5.0	3.6	3.8	1.3	3.2	3.8	4.3	11*

ND = not detected in sample analyzed (below method detection limit)

Red = Above DTSC-SL Limits

Table 3. Soil Analytical Results for OCPs and Lead around the house (1-23-2025)

Analyte	RN- 1@6" mg/kg	RN- 1@6" (dup) mg/kg	RN-1 @2' mg/kg	RN-2 @6" mg/kg	RN-2 @2' mg/kg	RS- 1@6" mg/kg	RS-1 @2' mg/kg	RS-2 @6" mg/kg	RS-2 @2' mg/kg	RE- 1@6" mg/kg	RE-1 @2' mg/kg	RE-2 @6" mg/kg	RE-2 @2' mg/kg	DTSC-SL (mg/kg)
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.039
a-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
b-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
d-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
g-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlordane (technical)	1.7	1.5	0.18	ND	ND	0.89	0.47	1.1	0.32	8.2	2.6	2.1	0.17	1.7
a-Chlordane	0.19	0.17	0.021	0.022	0.0018	0.10	0.054	0.081	0.025	0.91	0.29	0.26	0.026	
g-Chlordane	0.15	0.12	0.014	0.012	0.0011	0.081	0.041	0.065	0.023	0.96	0.34	0.22	0.022	
p,p-DDD	ND	ND	0.0060	ND	ND	ND	ND	0.043	ND	ND	0.047	ND	ND	2.3

^{* =} Arsenic set at 11 mg/kg – see discussion on Arsenic.

Analyte	RN-	RN-	RN-1	RN-2	RN-2	RS-	RS-1	RS-2	RS-2	RE-	RE-1	RE-2	RE-2	DTSC-SL
	1@6" mg/kg	1@6" (dup)	@2' mg/kg	@6" mg/kg	@2' mg/kg	1@6" mg/kg	@2' mg/kg	@6" mg/kg	@2' mg/kg	1@6" mg/kg	@2' mg/kg	@6" mg/kg	@2' mg/kg	(mg/kg)
	mg/Kg	mg/kg	mg/Ng	mg/Ng	mg/Kg	mg/Ng	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Ng	mg/Ng	mg/Kg	
p,p-DDE	0.57	0.63	0.11	0.15	0.015	0.41	0.18	0.44	0.012	0.64	0.24	0.33	0.038	2
p,p-DDT	0.36	0.46	0.022	0.035	0.0036	0.13	0.052	0.099	0.027	0.42	0.14	0.086	0.0082	1.9
Dieldrin	0.036	0.40	0.0039	ND	ND	0.034	0.020	0.022	0.0063	0.12	0.023	0.087	0.0097	0.034
Endosulfan I	ND	ND	0.013	ND	0.0015	ND	0.056	0.047	0.016	ND	ND	ND	ND	450
Endosulfan II	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Endosulfan	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	380
Sulfate														
Endrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.015	ND	ND	19
Endrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
aldehyde														
Endrin ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13
Heptachlor	0.027	0.019	0.011	ND	ND	0.014	0.0052	0.0057	ND	0.060	0.029	0.016	0.0016	0.07
epoxide														
Hexachloro-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19
benzene														
Hexachloro-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
cyclopentadiene														
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	320
Toxaphene	ND	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45
METALS														
Lead	32	40	9.3	34	8.5	17	19	29	21	44	12	40	9.0	80

Table 3b (Continued). Soil Analytical Results for OCPs and Lead around the house (1-23-2025)

Analyte	RW- 1@6" mg/kg	RW-1 @2' mg/kg	RW-2 @6" mg/kg	RW-2 @2' mg/kg	RW-2 @6" (dup)	DTSC-SL (mg/kg)
					mg/kg	
Aldrin	ND	ND	ND	ND	ND	0.039
a-BHC	ND	ND	ND	ND	ND	
b-BHC	ND	ND	ND	ND	ND	
d-BHC	ND	ND	ND	ND	ND	
g-BHC	ND	ND	ND	ND	ND	
Chlordane (technical)	0.71	0.13	0.73	ND	0.46	1.7
a-Chlordane	0.033	0.013	0.068	0.010	0.030	
g-Chlordane	0.040	0.011	0.069	0.0076	0.032	
p,p-DDD	0.045	0.0076	0.075	0.019	0.12	2.3
p,p-DDE	0.26	0.062	0.86	0.24	2.0	2
p,p-DDT	0.22	0.047	0.50	0.17	2.6	1.9
Dieldrin	ND	0.0043	ND	ND	ND	0.034
Endosulfan I	0.034	ND	0.029	ND	0.019	450
Endosulfan II	ND	ND	ND	ND	ND	
Endosulfan Sulfate	ND	ND	ND	ND	0.024	380
Endrin	ND	ND	ND	ND	ND	19
Endrin aldehyde	ND	0.0039	ND	ND	ND	
Endrin ketone	ND	ND	ND	ND	ND	
Heptachlor	ND	ND	ND	ND	ND	0.13
Heptachlor epoxide	ND	ND	0.0052	ND	ND	0.07
Hexachloro-benzene	ND	ND	ND	ND	ND	0.19
Hexachloro-cyclopentadiene	ND	ND	ND	ND	ND	
Methoxychlor	ND	ND	ND	ND	ND	320
Toxaphene	ND	ND	ND	ND	ND	0.45

Analyte	RW- 1@6" mg/kg	RW-1 @2' mg/kg	RW-2 @6" mg/kg	RW-2 @2' mg/kg	RW-2 @6" (dup) mg/kg	DTSC-SL (mg/kg)
Metals						
Lead	40	10	34	23	29	80

Table 4. Soil Analytical Results for OCPS – around S-1 location (Deeper Samples) 2-12-2025

Analyte	TP-1 @3'	TP-1 @4'	TP-2 @3'	TP-2 @4'	TP-3 @3'	TP-3 @3'	TP-3 @4'	TP-4 @3'	TP-4 @4'	DTSC-SL (mg/kg)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(dup)	mg/kg	mg/kg	mg/kg	(g/.ng)
						mg/kg				
Aldrin	ND	0.039								
DITO	NID	ND	NID	NID	NID	NID	NID	ND	ND	
a-BHC	ND									
b-BHC	ND									
d-BHC	ND									
g-BHC	ND									
Chlordane (technical)	ND	1.7								
a-Chlordane	0.0010	ND								
g-Chlordane	0.0010	ND								
p,p-DDD	0.0019	ND	2.3							
p,p-DDE	0.064	0.042	0.029	0.0015	ND	ND	0.0026	0.015	0.050	2
p,p-DDT	0.018	0.011	0.015	ND	ND	ND	0.0014	0.0020	0.0072	1.9
Dieldrin	ND	0.034								
Endosulfan I	ND	450								
Endosulfan II	ND									
Endosulfan Sulfate	ND	380								
Endrin	ND	19								
Endrin aldehyde	ND									

Analyte	TP-1 @3' mg/kg	TP-1 @4' mg/kg	TP-2 @3' mg/kg	TP-2 @4' mg/kg	TP-3 @3' mg/kg	TP-3 @3' (dup) mg/kg	TP-3 @4' mg/kg	TP-4 @3' mg/kg	TP-4 @4' mg/kg	DTSC-SL (mg/kg)
Endrin ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07
Hexachloro-benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19
Hexachloro-cyclopentadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	320
Toxaphene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45
METALS										
Arsenic	5.1	5.8	3.9	4.1	3.7	3.5	3.9	4.4	4.2	11*

ND = not detected in sample analyzed (below method detection limit)

Red = Above DTSC-SL Limits

^{* =} Arsenic set at 11 mg/kg – see discussion on Arsenic.

As shown in Tables 1, 2, 3 and 4, several OCPs were reported with elevated levels when compared to DTSC-SL levels. Discussions regarding OCPs, lead, and arsenic are detailed below.

5. DISCUSSION AND OPINION

The Subject Property is located on the west side of Madera Drive, Cupertino, CA. The Subject Property is identified by its APN as 32635061. The purpose of this follow-up Phase II ESA was to evaluate the surface soil of the Subject Property for impacts from its past use as an orchard and possible OCPs around the foundation of the existing residential structure. This follow-up Phase II ESA did not identify the extents (both width and depth) of the impacts as most samples contained elevated levels of OCPs.

OCP discussion

The soil samples collected and tested from the Subject Property indicated elevated concentrations of Chlordane (technical), p,p-DDT, p,p-DDE, Dieldrin,, and Toxaphene in multiple samples when compared to DTSC-SL levels. A more detailed discussion of each chemical is below:

Chlordane (technical)

Chlordane (technical) was detected in 4 of 37 soil samples (# count of duplicate samples excluded) at concentrations exceeding the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for residential purposes of 1.7 mg/kg. The greatest dieldrin concentration detected was 8.2 mg/kg (RE-1@6").

p,p-DDT

DDT was detected in 2 of 37 soil samples (# count of duplicate samples excluded) at concentrations exceeding the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for residential purposes of 1.9 mg/kg. The greatest dieldrin concentration detected was 7.3 mg/kg (S-1).

p,p-DDE

DDE was detected in 2 of 37 soil samples (# count of duplicate samples excluded) at concentrations exceeding the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for residential purposes of 2.0 mg/kg. The greatest dieldrin concentration detected was 16 mg/kg (S-1).

<u>Dieldrin</u>

Dieldrin was detected in 6 of 37 soil samples (# count of duplicate samples excluded) at concentrations exceeding the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for residential purposes of 0.034 mg/kg. The greatest dieldrin concentration detected was 0.4 mg/kg (RN-1@ 6" dup).

<u>Toxaphene</u>

Toxaphene was detected in 2 of 37 soil samples (# count of duplicate samples excluded) at concentrations exceeding the HHRA Note 3 June 2020-Revised May 2022, Table 1. DTSC-recommended Screening Levels for Soil Analytes (DTSC-SL) for residential purposes of 0.45 mg/kg. The greatest dieldrin concentration detected was 5.1 mg/kg (RN-1@6" dup).

Lead Discussion

Lead testing was conducted around the base of the residential building foundations. DTSC HERO recommends that the remedial/mitigation level for residential soil exposure remain at the current residential default value of 80 mg/kg. This soil testing indicated that the surface soils around the foundation contain elevated levels of lead over typical background, however, they are not elevated over the levels identified by DTSC that would require remediation. This is typically from lead paint used on housing prior to 1977 that has deteriorated and contaminated the soil with paint chips. No remediation is required based on this screening level for lead.

Arsenic Discussion

Arsenic was detected in all soil samples (and duplicate) at levels above the screening levels set by DTSC-SL of 0.11 mg/kg. However, Arsenic Strategies Determination of Arsenic Remediation Development of Arsenic Cleanup Goals dated January 16, 2009 by DTSC state that "The upper

limit of the background data set can be selected as the cleanup goal".

Therefore, a research document by Dylan Jacques Duvergé dated 2011 titled "ESTABLISHING BACKGROUND ARSENIC IN SOIL OF THE URBANIZED SAN FRANCISCO BAY REGION" states that the 99th percentile background level for the San Francisco Bay Area is 11 mg/kg. As such, the levels detected are well within normal background levels for the area and are not anticipated to impact human health at this time⁴. This document is referenced by the regional board on their website. The Study utilized Arsenic analyses of 1,454 soil samples across 77 sites in the Bay Area. Based on this discussion, no remediation is required based on this screening level for arsenic.

6. CONCLUSIONS AND RECOMMENDATIONS

The additional Phase II Environmental Site Assessment (ESA) results indicate that Chlordane (technical), p,p-DDT, p,p-DDE, Dieldrin,, and Toxaphene are present at the Subject Property at levels above DTSC-SL for residential use.

Lead and arsenic are not elevated based on the above discussed criteria. Therefore, no remediation is recommended for lead and arsenic.

Elevated OCPs impacts were identified around the residence at the six-inch level (6" bgs). Only Chlordane (technical) was identified elevated above the DTSC-SL residential level at the two-foot sampling depth (2' bgs). That location was at sample RE-1 @2'.

The area around the original sample S-1 was investigated for OCP impacts with stepout samples collected at 6" and 2' intervals. In additional, deeper samples were collected at 3 and 4 feet in depth. The sample S-2 was reported to contain Dieldrin at elevated levels (0.063 mg/kg) when compared to the DTSC-SL for residential use.

4

https://www.waterboards.ca.gov/sanfranciscobay/water_issues/available_documents/2011_Arsenic_Background_Duverge.pdf

Based on the results, a Removal Action should be prepared to remove the top two feet of soil around the residential building and the area north of the building (in the area of sample S-1).

Details of the amount and areas of removal will be discussed in the Removal Action Report.

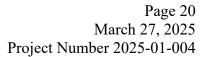
7. SPECIAL TERMS AND CONDITIONS

We have been authorized by Ben Engelman to perform a Phase II environmental Site Assessment of the subject Property. It is our understanding that Mr. Engelman will use the information contained in this report for due diligence and as part of the development of the property. Without prior written consent of the client, Enviro Assessment, PC will keep confidential and not disclose to any person or entity, and data or information provided by the client or generated in conjunction with the performance of this study, except when required by law. Provisions of confidentiality shall not apply to data or information obtained from the public domain or acquired from third parties not under obligation to the client to maintain confidentiality.

User Reliance

This report was prepared for the exclusive use of Mr. Engelman, No other person or entity is entitled to rely upon this report without the specific written authorization of Enviro Assessment, PC. Such reliance is subject to the same limitations, terms, and conditions as the original contract with the client. Enviro Assessment, PC specifically disclaims any responsibility for any unauthorized use of this report.

Limitations


Our professional services were performed, our findings obtained, and our conclusions proposed in

accordance with generally accepted principles and practices. This warranty is in lieu of all other

warranties either expressed or implied. Test findings and statements of professional opinion do not

constitute a guarantee or warranty, expressed or implied.

Opinions provided herein apply to the currently available data, and existing and reasonably foreseeable conditions at the time of this investigation. They cannot apply to changes in site conditions of which this office is unaware or has not had the opportunity to evaluate. Soil samples

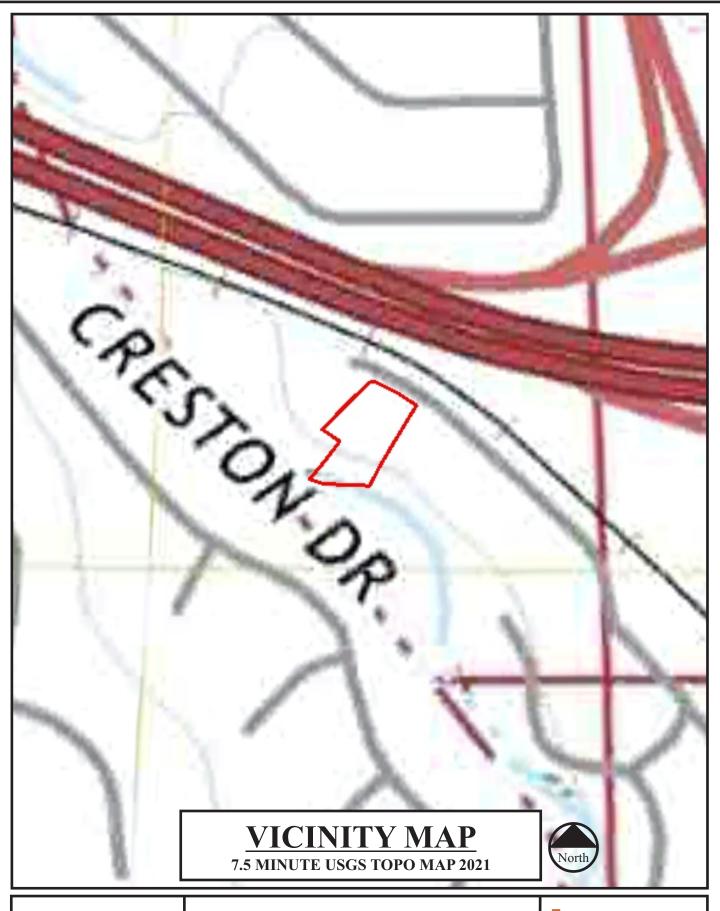
are collected from a small "representative area of soil", these samples are assumed to represent the chemical makeup of the general area, and as such there may be variations in adjacent soils. To further reduce the clients' liabilities, additional samples may be collected and analyzed to lower the possibility of generalizing the conditions and/or not locating an area of impacted soils at the site. Changes in conditions at the properties may occur with time due to natural processes or works of man on the properties or adjacent properties. Specifically, the properties are still under active use and chemicals may be applied to the properties between the date of this report and property redevelopment.

Changes in applicable standards may also occur as a result of legislation or broadening of knowledge. Accordingly, findings of this report may be invalidated, wholly or in part, by changes beyond our control.

8. PROFESSIONAL SIGNATURE

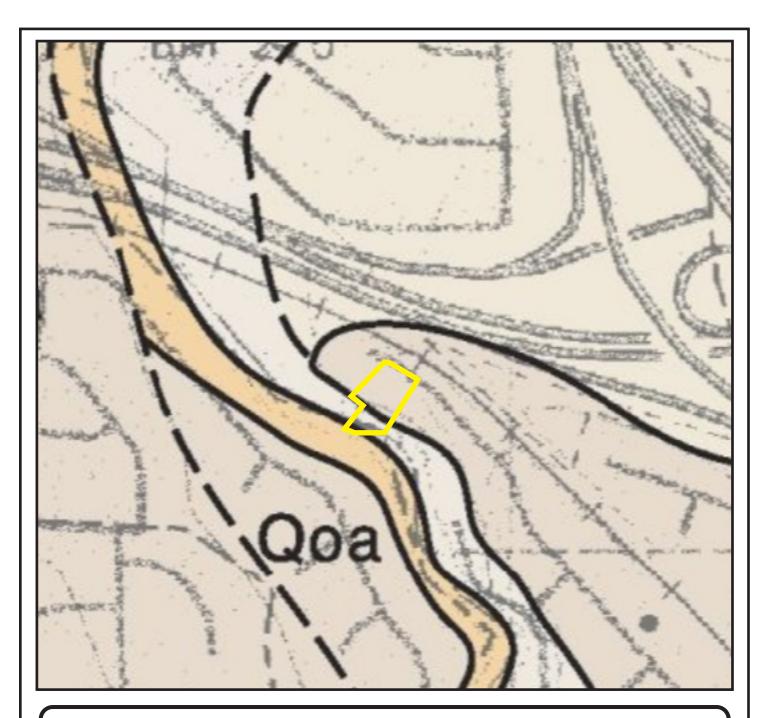
We declare that to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property.

It has been a pleasure to be of service. If any questions arise, please contact our office. Sincerely,


ENVIRO ASSESSMENT, PC

Steve Ashe, Sampling Technician

James D. Robinson Professional Geologist Signed on March 27, 2025


2025-01-004 March 10, 2025 PLATE: A1 PHASE II ENVIRONMENTAL SITE ASSESSMENT
MADERA DRIVE PROPERTY
10621 Madera Dr.,
Cupertino, CA 95014

ASSESSMENT, PC
Environmental • Hydro • Geology

2025-01-004 March 10, 2025 PLATE: A2 PHASE II ENVIRONMENTAL SITE ASSESSMENT
MADERA DRIVE PROPERTY
10621 Madera Dr.,
Cupertino, CA 95014

ASSESSMENT, PC
Environmental • Hydro • Geology

Site specific labeled Rock type as Qoa. Qoa: Older Alluvial terrace gravel, sand, and clay, undeformed.

GEOLOGICAL MAP

Dibblee, Jr, 2007

2025-01-004 March 10, 2025 PLATE: A3 PHASE II ENVIRONMENTAL SITE ASSESSMENT
MADERA DRIVE PROPERTY
10621 Madera Dr.,
Cupertino, CA 95014

ENVIRO

ASSESSMENT, PC

Environmental • Hydro • Geology

Santa Clara Area, California Western Part (CA641)

Map unit Map unit name Acres in AOI Percent of AOI 140 Urban Land-Flaskan complex, 0.6 60.8%

0 to 2 percent slopes

170 Urban Land-Landelspark complex, 0.4 39.2%

0 to 2 percent slopes.

SOIL MAP NO SCALE

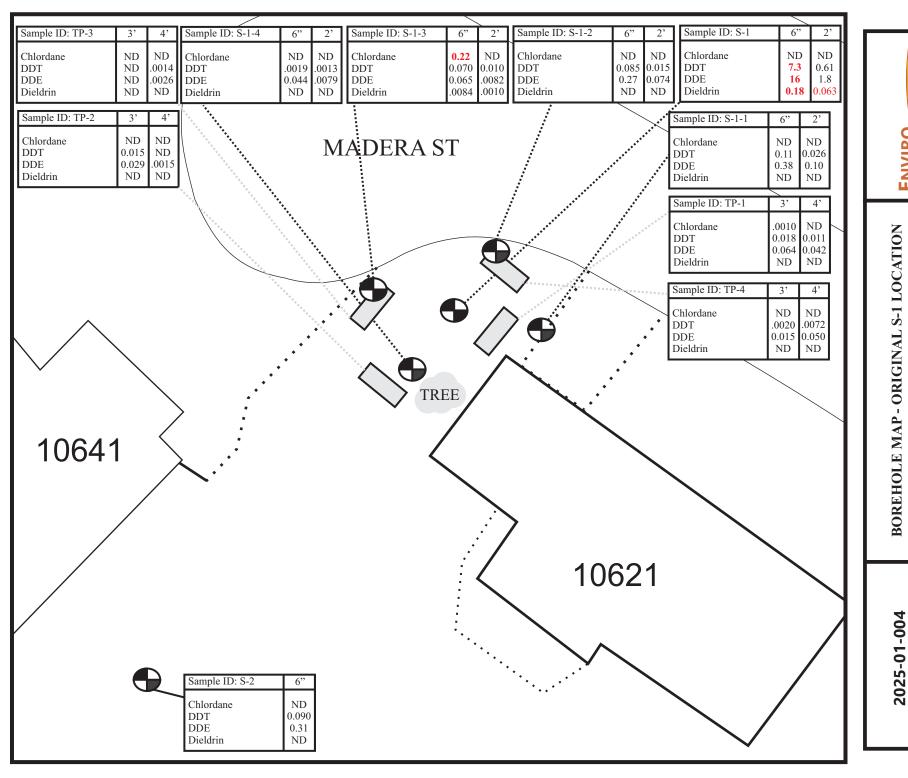
2025-01-004 March 10, 2025 PLATE: A4 PHASE II ENVIRONMENTAL SITE ASSESSMENT
MADERA DRIVE PROPERTY
10621 Madera Dr.,
Cupertino, CA 95014

ENVIRO

ASSESSMENT, PC

Environmental • Hydro • Geology

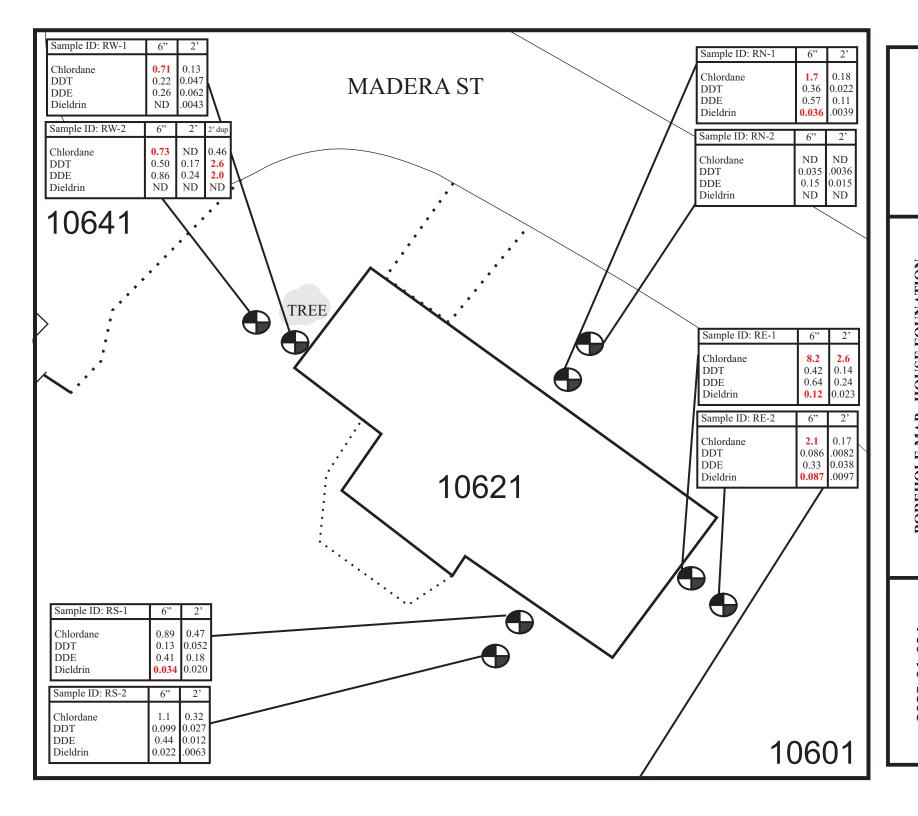
Samples take 4" to 6" in depth, Silty Sand, slightly moist, loose.



SCREENING BOREHOLE LOCATIONS

2021 - GOOGLE

2025-01-004 March 10, 2025 PLATE: A5 PHASE II ENVIRONMENTAL SITE ASSESSMENT
MADERA DRIVE PROPERTY
10621 Madera Dr.,
Cupertino, CA 95014



BOREHOLE MAP - ORIGINAL S-1 LOCATION MADERA DRIVE PROPERTY

CUPERTINO, CA 95014 January 19, 2025 ATE: B

ASSESSMENT, PC Environmental • Hydro • Geology PHONE (844) 742-7311 FAX (877) 623-5493

ASSESSMENT, PC Environmental • Hydro • Geology PHONE (844) 742-7311 FAX (877) 623-5493

BOREHOLE MAP-HOUSE FOUNATION MADERA DRIVE PROPERTY CUPERTINO, CA 95014

B2 January 19, 2025 2025-01-004 PLATE:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2501D62

Report Created for: Enviro Asssessment PC

1869 E Seltice Way #570

Post Falls, ID 83854

Project Contact: James Robinson

Project P.O.:

Project: 2024-12-14; Madera Drive Property

Project Location: Cupertino, CA

Project Received: 01/23/2025

Analytical Report reviewed & approved for release on 01/30/2025 by:

Tray Bosjan

Tracy Babjar

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2501D62

Project: 2024-12-14; Madera Drive Property

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹
ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2501D62

Project: 2024-12-14; Madera Drive Property

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

P Agreement between the quantitative dual-column confirmation results exceed method recommended limits of

40% RPD. The lowest concentration is reported.

a2 Sample diluted due to cluttered chromatogram.

a3 Sample diluted due to high organic content interfering with quantitative/or qualitative analysis.

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria.

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081BProject:2024-12-14; Madera Drive PropertyUnit:mg/kg

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** S-1-1@6' 2501D62-001A 01/23/2025 09:04 GC40 01272552.d 310055 Soil **Analytes** Result Qualifiers RL DF **Date Analyzed** ND 0.0010 01/27/2025 23:47 Aldrin 1 a-BHC ND 0.0010 1 01/27/2025 23:47 b-BHC ND 0.0010 01/27/2025 23:47 1 d-BHC ND 0.0010 1 01/27/2025 23:47 g-BHC ND 0.0010 01/27/2025 23:47 ND Chlordane (Technical) 0.025 1 01/27/2025 23:47 a-Chlordane 0.0028 0.0010 01/27/2025 23:47 Ρ g-Chlordane 0.0036 0.0010 1 01/27/2025 23:47 Ρ p,p-DDD 0.0068 0.0010 1 01/27/2025 23:47 p,p-DDE 0.38 0.0010 1 01/27/2025 23:47 p,p-DDT 0.0010 01/27/2025 23:47 0.11 1 Dieldrin ND 0.0010 01/27/2025 23:47 ND Endosulfan I 0.0010 1 01/27/2025 23:47 Endosulfan II ND 0.0010 01/27/2025 23:47 Endosulfan sulfate ND 0.0010 01/27/2025 23:47 1 Endrin ND 0.0010 1 01/27/2025 23:47 Endrin aldehyde ND 0.0010 01/27/2025 23:47 Endrin ketone ND 0.0010 1 01/27/2025 23:47 ND Heptachlor 0.0010 01/27/2025 23:47 Heptachlor epoxide ND 0.0010 1 01/27/2025 23:47 ND 0.010 1 01/27/2025 23:47 Hexachlorobenzene Hexachlorocyclopentadiene ND 0.020 1 01/27/2025 23:47 ND 0.0010 1 01/27/2025 23:47 Methoxychlor Toxaphene ND 0.20 01/27/2025 23:47 Surrogates **REC (%) Limits** Decachlorobiphenyl 93 60-130 01/27/2025 23:47 Analyst(s): EEV

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property Unit: mg/kg

Organochlorine Pesticides										
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID				
S-1-1@2'	2501D62-002A	Soil	01/23/2025	10:10	GC40 01272555.d	310055				
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed				
Aldrin	ND		0.0010	1		01/28/2025 00:31				
a-BHC	ND		0.0010	1		01/28/2025 00:31				
b-BHC	ND		0.0010	1		01/28/2025 00:31				
d-BHC	ND		0.0010	1		01/28/2025 00:31				
g-BHC	ND		0.0010	1		01/28/2025 00:31				
Chlordane (Technical)	ND		0.025	1		01/28/2025 00:31				
a-Chlordane	ND		0.0010	1		01/28/2025 00:31				
g-Chlordane	0.0013		0.0010	1		01/28/2025 00:31				
p,p-DDD	0.0020	Р	0.0010	1		01/28/2025 00:31				
p,p-DDE	0.10		0.0010	1		01/28/2025 00:31				
p,p-DDT	0.026		0.0010	1		01/28/2025 00:31				
Dieldrin	ND		0.0010	1		01/28/2025 00:31				
Endosulfan I	ND		0.0010	1		01/28/2025 00:31				
Endosulfan II	ND		0.0010	1		01/28/2025 00:31				
Endosulfan sulfate	ND		0.0010	1		01/28/2025 00:31				
Endrin	ND		0.0010	1		01/28/2025 00:31				
Endrin aldehyde	ND		0.0010	1		01/28/2025 00:31				
Endrin ketone	ND		0.0010	1		01/28/2025 00:31				
Heptachlor	ND		0.0010	1		01/28/2025 00:31				
Heptachlor epoxide	ND		0.0010	1		01/28/2025 00:31				
Hexachlorobenzene	ND		0.010	1		01/28/2025 00:31				
Hexachlorocyclopentadiene	ND		0.020	1		01/28/2025 00:31				
Methoxychlor	ND		0.0010	1		01/28/2025 00:31				
Toxaphene	ND		0.20	1		01/28/2025 00:31				
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>							
Decachlorobiphenyl	96		60-130			01/28/2025 00:31				
Analyst(s): EEV										

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property **Unit:** mg/kg

Organochlorine Pesticides						
Client ID	Lab ID	Matrix Soil	Date Collected 01/23/2025 09:30		Instrument GC40 01272556.d	Batch ID 310055
S-1-2@6"	2501D62-003A					
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Aldrin	ND		0.0010	1		01/28/2025 00:46
a-BHC	ND		0.0010	1		01/28/2025 00:46
b-BHC	ND		0.0010	1		01/28/2025 00:46
d-BHC	ND		0.0010	1		01/28/2025 00:46
g-BHC	ND		0.0010	1		01/28/2025 00:46
Chlordane (Technical)	ND		0.025	1		01/28/2025 00:46
a-Chlordane	0.0072		0.0010	1		01/28/2025 00:46
g-Chlordane	0.012		0.0010	1		01/28/2025 00:46
p,p-DDD	ND		0.0010	1		01/28/2025 00:46
p,p-DDE	0.27		0.0010	1		01/28/2025 00:46
p,p-DDT	0.085		0.0010	1		01/28/2025 00:46
Dieldrin	ND		0.0010	1		01/28/2025 00:46
Endosulfan I	ND		0.0010	1		01/28/2025 00:46
Endosulfan II	ND		0.0010	1		01/28/2025 00:46
Endosulfan sulfate	ND		0.0010	1		01/28/2025 00:46
Endrin	ND		0.0010	1		01/28/2025 00:46
Endrin aldehyde	ND		0.0010	1		01/28/2025 00:46
Endrin ketone	ND		0.0010	1		01/28/2025 00:46
Heptachlor	ND		0.0010	1		01/28/2025 00:46
Heptachlor epoxide	ND		0.0010	1		01/28/2025 00:46
Hexachlorobenzene	ND		0.010	1		01/28/2025 00:46
Hexachlorocyclopentadiene	ND		0.020	1		01/28/2025 00:46
Methoxychlor	ND		0.0010	1		01/28/2025 00:46
Toxaphene	ND		0.20	1		01/28/2025 00:46
Surrogates	REC (%)		<u>Limits</u>			
Decachlorobiphenyl	93		60-130			01/28/2025 00:46
Analyst(s): EEV						

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** S-1-2@2' 2501D62-004A 01/23/2025 10:50 GC40 01272557.d 310055 Soil **Analytes** Result Qualifiers RL DF **Date Analyzed** ND 0.0010 01/28/2025 01:00 Aldrin 1 a-BHC ND 0.0010 1 01/28/2025 01:00 b-BHC ND 0.0010 01/28/2025 01:00 1 d-BHC ND 0.0010 1 01/28/2025 01:00 g-BHC ND 0.0010 01/28/2025 01:00 ND Chlordane (Technical) 0.025 1 01/28/2025 01:00 a-Chlordane 0.0010 0.0010 01/28/2025 01:00 Р g-Chlordane 0.0011 0.0010 1 01/28/2025 01:00 p,p-DDD ND 0.0010 1 01/28/2025 01:00 p,p-DDE 0.074 0.0010 1 01/28/2025 01:00 p,p-DDT 0.015 0.0010 1 01/28/2025 01:00 Dieldrin ND 0.0010 01/28/2025 01:00 ND Endosulfan I 0.0010 1 01/28/2025 01:00 Endosulfan II ND 0.0010 01/28/2025 01:00 Endosulfan sulfate ND 0.0010 1 01/28/2025 01:00 Endrin ND 0.0010 1 01/28/2025 01:00 Endrin aldehyde ND 0.0010 01/28/2025 01:00 Endrin ketone ND 0.0010 1 01/28/2025 01:00 ND Heptachlor 0.0010 01/28/2025 01:00 Heptachlor epoxide ND 0.0010 1 01/28/2025 01:00 ND 0.010 1 Hexachlorobenzene 01/28/2025 01:00 Hexachlorocyclopentadiene ND 0.020 1 01/28/2025 01:00 ND 0.0010 1 01/28/2025 01:00 Methoxychlor Toxaphene ND 0.20 01/28/2025 01:00 Surrogates **REC (%) Limits** Decachlorobiphenyl 101 60-130 01/28/2025 01:00

Analyst(s): EEV

Project:

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** S-1-3@6' 2501D62-005A 01/23/2025 09:35 GC40 01272558.d 310055 Soil **Analytes** Result RL DF **Date Analyzed** ND 0.0050 5 01/28/2025 01:15 Aldrin a-BHC 5 ND 0.0050 01/28/2025 01:15 b-BHC ND 5 01/28/2025 01:15 0.0050 d-BHC ND 0.0050 5 01/28/2025 01:15 g-BHC ND 0.0050 01/28/2025 01:15 Chlordane (Technical) 0.22 0.12 5 01/28/2025 01:15 a-Chlordane 0.015 0.0050 5 01/28/2025 01:15 g-Chlordane 0.024 0.0050 5 01/28/2025 01:15 p,p-DDD ND 5 01/28/2025 01:15 0.0050 p,p-DDE 0.065 0.0050 5 01/28/2025 01:15 p,p-DDT 0.070 0.0050 5 01/28/2025 01:15 Dieldrin 0.0084 0.0050 5 01/28/2025 01:15 Endosulfan I ND 0.0050 5 01/28/2025 01:15 ND Endosulfan II 0.0050 5 01/28/2025 01:15 Endosulfan sulfate ND 5 01/28/2025 01:15 0.0050 Endrin ND 0.0050 5 01/28/2025 01:15 Endrin aldehyde 0.0058 0.0050 5 01/28/2025 01:15 Endrin ketone ND 0.0050 5 01/28/2025 01:15 ND Heptachlor 0.0050 5 01/28/2025 01:15 Heptachlor epoxide ND 0.0050 5 01/28/2025 01:15 ND 0.050 5 Hexachlorobenzene 01/28/2025 01:15 Hexachlorocyclopentadiene ND 0.10 5 01/28/2025 01:15 ND 0.0050 5 01/28/2025 01:15 Methoxychlor Toxaphene ND 1.0 5 01/28/2025 01:15 Surrogates **REC (%) Limits** Decachlorobiphenyl 114 60-130 01/28/2025 01:15 Analyst(s): EEV Analytical Comments: a3

Project:

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	cted	Instrument	Batch ID		
S-1-3@2'	2501D62-006A	Soil	01/23/2025 1	10:40	GC40 01272563.d	310055		
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0010	1		01/28/2025 02:28		
a-BHC	ND		0.0010	1		01/28/2025 02:28		
b-BHC	ND		0.0010	1		01/28/2025 02:28		
d-BHC	ND		0.0010	1		01/28/2025 02:28		
g-BHC	ND		0.0010	1		01/28/2025 02:28		
Chlordane (Technical)	ND		0.025	1		01/28/2025 02:28		
a-Chlordane	0.0019		0.0010	1		01/28/2025 02:28		
g-Chlordane	0.0031	Р	0.0010	1		01/28/2025 02:28		
p,p-DDD	ND		0.0010	1		01/28/2025 02:28		
p,p-DDE	0.0082		0.0010	1		01/28/2025 02:28		
p,p-DDT	0.010		0.0010	1		01/28/2025 02:28		
Dieldrin	0.0010		0.0010	1		01/28/2025 02:28		
Endosulfan I	ND		0.0010	1		01/28/2025 02:28		
Endosulfan II	ND		0.0010	1		01/28/2025 02:28		
Endosulfan sulfate	ND		0.0010	1		01/28/2025 02:28		
Endrin	ND		0.0010	1		01/28/2025 02:28		
Endrin aldehyde	ND		0.0010	1		01/28/2025 02:28		
Endrin ketone	ND		0.0010	1		01/28/2025 02:28		
Heptachlor	ND		0.0010	1		01/28/2025 02:28		
Heptachlor epoxide	ND		0.0010	1		01/28/2025 02:28		
Hexachlorobenzene	ND		0.010	1		01/28/2025 02:28		
Hexachlorocyclopentadiene	ND		0.020	1		01/28/2025 02:28		
Methoxychlor	0.0015		0.0010	1		01/28/2025 02:28		
Toxaphene	ND		0.20	1		01/28/2025 02:28		
Surrogates	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	88		60-130			01/28/2025 02:28		
Analyst(s): EEV								

Analytical Report

 Client:
 Enviro Asssessment PC

 Date Received:
 01/23/2025 17:03

 Date Prepared:
 01/23/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID		
S-1-4@6"	2501D62-007A	Soil	01/23/2025	09:45	GC40 01272564.d	310055		
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0010	1		01/28/2025 02:43		
a-BHC	ND		0.0010	1		01/28/2025 02:43		
b-BHC	ND		0.0010	1		01/28/2025 02:43		
d-BHC	ND		0.0010	1		01/28/2025 02:43		
g-BHC	ND		0.0010	1		01/28/2025 02:43		
Chlordane (Technical)	ND		0.025	1		01/28/2025 02:43		
a-Chlordane	0.0014		0.0010	1		01/28/2025 02:43		
g-Chlordane	0.0017		0.0010	1		01/28/2025 02:43		
p,p-DDD	0.0013	Р	0.0010	1		01/28/2025 02:43		
p,p-DDE	0.044		0.0010	1		01/28/2025 02:43		
p,p-DDT	0.019		0.0010	1		01/28/2025 02:43		
Dieldrin	ND		0.0010	1		01/28/2025 02:43		
Endosulfan I	ND		0.0010	1		01/28/2025 02:43		
Endosulfan II	ND		0.0010	1		01/28/2025 02:43		
Endosulfan sulfate	ND		0.0010	1		01/28/2025 02:43		
Endrin	ND		0.0010	1		01/28/2025 02:43		
Endrin aldehyde	ND		0.0010	1		01/28/2025 02:43		
Endrin ketone	ND		0.0010	1		01/28/2025 02:43		
Heptachlor	ND		0.0010	1		01/28/2025 02:43		
Heptachlor epoxide	ND		0.0010	1		01/28/2025 02:43		
Hexachlorobenzene	ND		0.010	1		01/28/2025 02:43		
Hexachlorocyclopentadiene	ND		0.020	1		01/28/2025 02:43		
Methoxychlor	ND		0.0010	1		01/28/2025 02:43		
Toxaphene	ND		0.20	1		01/28/2025 02:43		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	95		60-130			01/28/2025 02:43		
Analyst(s): EEV								

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID Matrix Date Collected Instrument Batch ID								
S-1-4@2'	2501D62-008A	Soil	01/23/2025	10:17	GC40 01272565.d	310055		
<u>Analytes</u>	Result	Qualifiers	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0010	1		01/28/2025 02:58		
a-BHC	ND		0.0010	1		01/28/2025 02:58		
b-BHC	ND		0.0010	1		01/28/2025 02:58		
d-BHC	ND		0.0010	1		01/28/2025 02:58		
g-BHC	ND		0.0010	1		01/28/2025 02:58		
Chlordane (Technical)	ND		0.025	1		01/28/2025 02:58		
a-Chlordane	ND		0.0010	1		01/28/2025 02:58		
g-Chlordane	ND		0.0010	1		01/28/2025 02:58		
p,p-DDD	ND		0.0010	1		01/28/2025 02:58		
p,p-DDE	0.0079		0.0010	1		01/28/2025 02:58		
p,p-DDT	0.0013	Р	0.0010	1		01/28/2025 02:58		
Dieldrin	ND		0.0010	1		01/28/2025 02:58		
Endosulfan I	ND		0.0010	1		01/28/2025 02:58		
Endosulfan II	ND		0.0010	1		01/28/2025 02:58		
Endosulfan sulfate	ND		0.0010	1		01/28/2025 02:58		
Endrin	ND		0.0010	1		01/28/2025 02:58		
Endrin aldehyde	ND		0.0010	1		01/28/2025 02:58		
Endrin ketone	ND		0.0010	1		01/28/2025 02:58		
Heptachlor	ND		0.0010	1		01/28/2025 02:58		
Heptachlor epoxide	ND		0.0010	1		01/28/2025 02:58		
Hexachlorobenzene	ND		0.010	1		01/28/2025 02:58		
Hexachlorocyclopentadiene	ND		0.020	1		01/28/2025 02:58		
Methoxychlor	ND		0.0010	1		01/28/2025 02:58		
Toxaphene	ND		0.20	1		01/28/2025 02:58		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	91		60-130			01/28/2025 02:58		
Analyst(s): EEV								

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/23/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID		
S-1 @2'	2501D62-009A	Soil	01/23/2025	10:35	GC40 01282516.d	310055		
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.020	20		01/28/2025 16:02		
a-BHC	ND		0.020	20		01/28/2025 16:02		
b-BHC	ND		0.020	20		01/28/2025 16:02		
d-BHC	ND		0.020	20		01/28/2025 16:02		
g-BHC	ND		0.020	20		01/28/2025 16:02		
Chlordane (Technical)	ND		0.50	20		01/28/2025 16:02		
a-Chlordane	0.045		0.020	20		01/28/2025 16:02		
g-Chlordane	0.057		0.020	20		01/28/2025 16:02		
p,p-DDD	0.055		0.020	20		01/28/2025 16:02		
p,p-DDE	1.8		0.020	20		01/28/2025 16:02		
p,p-DDT	0.61		0.020	20		01/28/2025 16:02		
Dieldrin	0.063		0.020	20		01/28/2025 16:02		
Endosulfan I	ND		0.020	20		01/28/2025 16:02		
Endosulfan II	ND		0.020	20		01/28/2025 16:02		
Endosulfan sulfate	ND		0.020	20		01/28/2025 16:02		
Endrin	ND		0.020	20		01/28/2025 16:02		
Endrin aldehyde	ND		0.020	20		01/28/2025 16:02		
Endrin ketone	ND		0.020	20		01/28/2025 16:02		
Heptachlor	ND		0.020	20		01/28/2025 16:02		
Heptachlor epoxide	ND		0.020	20		01/28/2025 16:02		
Hexachlorobenzene	ND		0.20	20		01/28/2025 16:02		
Hexachlorocyclopentadiene	ND		0.40	20		01/28/2025 16:02		
Methoxychlor	ND		0.020	20		01/28/2025 16:02		
Toxaphene	ND		4.0	20		01/28/2025 16:02		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	117		60-130			01/28/2025 16:02		
Analyst(s): EEV			Analytical Com	ıments: a2	2			

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides								
Client ID	Lab ID	Matrix Soil	Date Colle	ected	Instrument GC40 01272567.d	Batch ID 310055		
S-1-3@6" DUP	2501D62-010A		01/23/2025	09:37				
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0050	5		01/28/2025 03:27		
a-BHC	ND		0.0050	5		01/28/2025 03:27		
b-BHC	ND		0.0050	5		01/28/2025 03:27		
d-BHC	ND		0.0050	5		01/28/2025 03:27		
g-BHC	ND		0.0050	5		01/28/2025 03:27		
Chlordane (Technical)	0.18		0.12	5		01/28/2025 03:27		
a-Chlordane	0.013		0.0050	5		01/28/2025 03:27		
g-Chlordane	0.019	Р	0.0050	5		01/28/2025 03:27		
p,p-DDD	0.010	Р	0.0050	5		01/28/2025 03:27		
p,p-DDE	0.058		0.0050	5		01/28/2025 03:27		
p,p-DDT	0.059		0.0050	5		01/28/2025 03:27		
Dieldrin	0.0072		0.0050	5		01/28/2025 03:27		
Endosulfan I	ND		0.0050	5		01/28/2025 03:27		
Endosulfan II	ND		0.0050	5		01/28/2025 03:27		
Endosulfan sulfate	ND		0.0050	5		01/28/2025 03:27		
Endrin	ND		0.0050	5		01/28/2025 03:27		
Endrin aldehyde	ND		0.0050	5		01/28/2025 03:27		
Endrin ketone	ND		0.0050	5		01/28/2025 03:27		
Heptachlor	ND		0.0050	5		01/28/2025 03:27		
Heptachlor epoxide	ND		0.0050	5		01/28/2025 03:27		
Hexachlorobenzene	ND		0.050	5		01/28/2025 03:27		
Hexachlorocyclopentadiene	ND		0.10	5		01/28/2025 03:27		
Methoxychlor	ND		0.0050	5		01/28/2025 03:27		
Toxaphene	ND		1.0	5		01/28/2025 03:27		
Surrogates	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	120		60-130			01/28/2025 03:27		
Analyst(s): EEV			Analytical Com	ments: a3	3			

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** RN-1@6" 2501D62-011A 01/23/2025 08:04 GC40 01282517.d 310055 Soil **Analytes** Result RL DF **Date Analyzed** ND 0.010 01/28/2025 16:17 Aldrin 10 a-BHC ND 0.010 10 01/28/2025 16:17 b-BHC ND 0.010 01/28/2025 16:17 10 d-BHC ND 0.010 10 01/28/2025 16:17 g-BHC ND 0.010 10 01/28/2025 16:17 Chlordane (Technical) 1.7 0.25 10 01/28/2025 16:17 a-Chlordane 0.19 0.010 10 01/28/2025 16:17 0.010 g-Chlordane 0.15 10 01/28/2025 16:17 p,p-DDD ND 0.010 10 01/28/2025 16:17 p,p-DDE 0.57 0.010 10 01/28/2025 16:17 p,p-DDT 0.010 01/28/2025 16:17 0.36 10 Dieldrin 0.036 0.010 10 01/28/2025 16:17 Endosulfan I ND 0.010 10 01/28/2025 16:17 Endosulfan II ND 0.010 10 01/28/2025 16:17 Endosulfan sulfate ND 0.010 10 01/28/2025 16:17 Endrin ND 0.010 10 01/28/2025 16:17 Endrin aldehyde ND 0.010 10 01/28/2025 16:17 Endrin ketone ND 0.010 10 01/28/2025 16:17 ND Heptachlor 0.010 10 01/28/2025 16:17 Heptachlor epoxide 0.010 10 01/28/2025 16:17 0.027 ND 0.10 10 01/28/2025 16:17 Hexachlorobenzene Hexachlorocyclopentadiene ND 0.20 10 01/28/2025 16:17 ND 0.010 10 01/28/2025 16:17 Methoxychlor Toxaphene ND 2.0 10 01/28/2025 16:17 Surrogates **REC (%) Limits** Decachlorobiphenyl 117 60-130 01/28/2025 16:17

Analytical Comments: a2

Analyst(s): EEV

Project:

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID		
RS-1@6"	2501D62-015A	Soil	01/23/2025	09:15	GC40 01272569.d	310055		
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0020	2		01/28/2025 03:56		
a-BHC	ND		0.0020	2		01/28/2025 03:56		
b-BHC	ND		0.0020	2		01/28/2025 03:56		
d-BHC	ND		0.0020	2		01/28/2025 03:56		
g-BHC	ND		0.0020	2		01/28/2025 03:56		
Chlordane (Technical)	0.89		0.050	2		01/28/2025 03:56		
a-Chlordane	0.10		0.0020	2		01/28/2025 03:56		
g-Chlordane	0.081	Р	0.0020	2		01/28/2025 03:56		
p,p-DDD	ND		0.0020	2		01/28/2025 03:56		
p,p-DDE	0.41	Р	0.0020	2		01/28/2025 03:56		
p,p-DDT	0.13		0.0020	2		01/28/2025 03:56		
Dieldrin	0.034		0.0020	2		01/28/2025 03:56		
Endosulfan I	ND		0.0020	2		01/28/2025 03:56		
Endosulfan II	ND		0.0020	2		01/28/2025 03:56		
Endosulfan sulfate	ND		0.0020	2		01/28/2025 03:56		
Endrin	ND		0.0020	2		01/28/2025 03:56		
Endrin aldehyde	ND		0.0020	2		01/28/2025 03:56		
Endrin ketone	ND		0.0020	2		01/28/2025 03:56		
Heptachlor	ND		0.0020	2		01/28/2025 03:56		
Heptachlor epoxide	0.014		0.0020	2		01/28/2025 03:56		
Hexachlorobenzene	ND		0.020	2		01/28/2025 03:56		
Hexachlorocyclopentadiene	ND		0.040	2		01/28/2025 03:56		
Methoxychlor	ND		0.0020	2		01/28/2025 03:56		
Toxaphene	ND		0.40	2		01/28/2025 03:56		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	108		60-130			01/28/2025 03:56		
Analyst(s): EEV			Analytical Com	ments: a	3			

Project:

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID		
RN-1@6" (dup)	2501D62-019A	Soil	01/23/2025	08:58	GC40 01292508.d	310055		
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.010	10		01/29/2025 16:49		
a-BHC	ND		0.010	10		01/29/2025 16:49		
b-BHC	ND		0.010	10		01/29/2025 16:49		
d-BHC	ND		0.010	10		01/29/2025 16:49		
g-BHC	ND		0.010	10		01/29/2025 16:49		
Chlordane (Technical)	1.5		0.25	10		01/29/2025 16:49		
a-Chlordane	0.17		0.010	10		01/29/2025 16:49		
g-Chlordane	0.12		0.010	10		01/29/2025 16:49		
p,p-DDD	ND		0.010	10		01/29/2025 16:49		
p,p-DDE	0.63		0.010	10		01/29/2025 16:49		
p,p-DDT	0.46		0.010	10		01/29/2025 16:49		
Dieldrin	0.040		0.010	10		01/29/2025 16:49		
Endosulfan I	ND		0.010	10		01/29/2025 16:49		
Endosulfan II	ND		0.010	10		01/29/2025 16:49		
Endosulfan sulfate	ND		0.010	10		01/29/2025 16:49		
Endrin	ND		0.010	10		01/29/2025 16:49		
Endrin aldehyde	ND		0.010	10		01/29/2025 16:49		
Endrin ketone	ND		0.010	10		01/29/2025 16:49		
Heptachlor	ND		0.010	10		01/29/2025 16:49		
Heptachlor epoxide	0.019		0.010	10		01/29/2025 16:49		
Hexachlorobenzene	ND		0.10	10		01/29/2025 16:49		
Hexachlorocyclopentadiene	ND		0.20	10		01/29/2025 16:49		
Methoxychlor	ND		0.010	10		01/29/2025 16:49		
Toxaphene	5.1		2.0	10		01/29/2025 16:49		
Surrogates	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	96		60-130			01/29/2025 16:49		
Analyst(s): EEV			Analytical Com	ments: a2	2			

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:01/23/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** RE-1@6" 2501D62-020A 01/23/2025 08:35 GC40 01282526.d 310055 Soil **Analytes** Result RL DF **Date Analyzed** ND 0.050 50 01/28/2025 18:32 Aldrin a-BHC ND 0.050 50 01/28/2025 18:32 b-BHC ND 0.050 01/28/2025 18:32 50 d-BHC ND 0.050 50 01/28/2025 18:32 g-BHC ND 0.050 50 01/28/2025 18:32 Chlordane (Technical) 8.2 1.2 50 01/28/2025 18:32 a-Chlordane 0.91 0.050 50 01/28/2025 18:32 g-Chlordane 0.96 0.050 50 01/28/2025 18:32 p,p-DDD ND 0.050 01/28/2025 18:32 50 p,p-DDE 0.64 0.050 50 01/28/2025 18:32 p,p-DDT 0.050 01/28/2025 18:32 0.42 50 Dieldrin 0.12 0.050 50 01/28/2025 18:32 Endosulfan I ND 0.050 50 01/28/2025 18:32 Endosulfan II ND 0.050 50 01/28/2025 18:32 Endosulfan sulfate ND 0.050 50 01/28/2025 18:32 Endrin ND 0.050 50 01/28/2025 18:32 Endrin aldehyde ND 0.050 50 01/28/2025 18:32 Endrin ketone ND 0.050 50 01/28/2025 18:32 ND Heptachlor 0.050 50 01/28/2025 18:32 Heptachlor epoxide 0.050 50 01/28/2025 18:32 0.060 ND 0.50 01/28/2025 18:32 Hexachlorobenzene 50 Hexachlorocyclopentadiene ND 1.0 50 01/28/2025 18:32 ND 0.050 50 01/28/2025 18:32 Methoxychlor Toxaphene ND 10 50 01/28/2025 18:32 Surrogates **REC (%) Limits** Decachlorobiphenyl 127 60-130 01/28/2025 18:32 Analyst(s): EEV Analytical Comments: a2

Project:

Analytical Report

 Client:
 Enviro Asssessment PC
 WorkOrder:
 2501D62

 Date Received:
 01/23/2025 17:03
 Extraction Method:
 SW3550B

 Date Prepared:
 01/23/2025
 Analytical Method:
 SW8081B

Organochlorine Pesticides								
Client ID	Lab ID	Matrix Soil	Date Coll	ected	Instrument GC40 01282525.d	Batch ID		
RW-1@6"	2501D62-024A		01/23/2025	07:56		310055		
<u>Analytes</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.010	10		01/28/2025 18:17		
a-BHC	ND		0.010	10		01/28/2025 18:17		
b-BHC	ND		0.010	10		01/28/2025 18:17		
d-BHC	ND		0.010	10		01/28/2025 18:17		
g-BHC	ND		0.010	10		01/28/2025 18:17		
Chlordane (Technical)	0.71		0.25	10		01/28/2025 18:17		
a-Chlordane	0.033		0.010	10		01/28/2025 18:17		
g-Chlordane	0.040		0.010	10		01/28/2025 18:17		
p,p-DDD	0.045		0.010	10		01/28/2025 18:17		
p,p-DDE	0.26		0.010	10		01/28/2025 18:17		
p,p-DDT	0.22		0.010	10		01/28/2025 18:17		
Dieldrin	ND		0.010	10		01/28/2025 18:17		
Endosulfan I	0.034	Р	0.010	10		01/28/2025 18:17		
Endosulfan II	ND		0.010	10		01/28/2025 18:17		
Endosulfan sulfate	ND		0.010	10		01/28/2025 18:17		
Endrin	ND		0.010	10		01/28/2025 18:17		
Endrin aldehyde	ND		0.010	10		01/28/2025 18:17		
Endrin ketone	ND		0.010	10		01/28/2025 18:17		
Heptachlor	ND		0.010	10		01/28/2025 18:17		
Heptachlor epoxide	ND		0.010	10		01/28/2025 18:17		
Hexachlorobenzene	ND		0.10	10		01/28/2025 18:17		
Hexachlorocyclopentadiene	ND		0.20	10		01/28/2025 18:17		
Methoxychlor	ND		0.010	10		01/28/2025 18:17		
Toxaphene	ND		2.0	10		01/28/2025 18:17		
Surrogates	REC (%)		<u>Limits</u>					
Decachlorobiphenyl	120		60-130			01/28/2025 18:17		
Analyst(s): EEV			Analytical Com	ments: a2	2			

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/24/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals								
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID		
S-1-1@6"	1-1@6" 2501D62-001A Soil		01/23/2025 09:04		ICP-MS4 115SMPL.d	310050		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Arsenic	7.7		0.50	1		01/27/2025 13:03		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Terbium	99		70-130			01/27/2025 13:03		
Analyst(s): WV								

Client ID			Matrix Date Col		Instrument	Batch ID	
S-1-1@2'			5 10:10	ICP-MS5 103SMPL.d	310050		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
Arsenic	4.7		0.50	1		01/27/2025 15:02	
Surrogates	<u>REC (%)</u>		<u>Limits</u>				
Terbium	95		70-130	ı		01/27/2025 15:02	
Analyst(s): MIG							

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
S-1-2@6"	2501D62-003A	Soil	01/23/202	5 09:30	ICP-MS5 104SMPL.d	310050
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	6.2		0.50	1		01/27/2025 15:06
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	93		70-130)		01/27/2025 15:06
Analyst(s): MIG						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/24/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals Client ID Lab ID Matrix **Date Collected Batch ID Instrument** S-1-2@2' 2501D62-004A Soil 01/23/2025 10:50 ICP-MS5 105SMPL.d 310050 Result <u>RL</u> DF **Date Analyzed Analytes** 0.50 Arsenic 5.0 1 01/27/2025 15:09 Surrogates **REC (%) Limits** 01/27/2025 15:09 Terbium 98 70-130 Analyst(s): MIG

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
S-1-3@6"	2501D62-005A	Soil	01/23/2025	09:35	ICP-MS5 106SMPL.d	310050
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.6		0.50	1		01/27/2025 15:13
Surrogates	REC (%)		<u>Limits</u>			
Terbium	97		70-130			01/27/2025 15:13
Analyst(s): MIG						

Client ID	Lab ID	Lab ID Matrix			Instrument	Batch ID
S-1-3@2'	2501D62-006A	2501D62-006A Soil		5 10:40	ICP-MS5 107SMPL.d	310050
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.8		0.50	1		01/27/2025 15:17
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	99		70-130)		01/27/2025 15:17
Analyst(s): MIG						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/24/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals Client ID Lab ID Matrix **Date Collected Batch ID Instrument** S-1-4@6" 2501D62-007A Soil 01/23/2025 09:45 ICP-MS5 108SMPL.d 310050 Result <u>RL</u> DF **Date Analyzed Analytes** 0.50 Arsenic 1.3 1 01/27/2025 15:20 Surrogates **REC (%) Limits** 01/27/2025 15:20 Terbium 100 70-130 Analyst(s): MIG

Client ID	Lab ID Matrix Date G		Date Coll	ected	Instrument	Batch ID
S-1-4@2'	2501D62-008A	Soil	01/23/2025	10:17	ICP-MS6 165SMPL.d	310050
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.2		0.50	1		01/27/2025 15:48
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	104		70-130			01/27/2025 15:48
Analyst(s): AL						

Client ID	Lab ID	Lab ID Matrix		llected	Instrument	Batch ID
S-1 @2'	2501D62-009A	2501D62-009A Soil		5 10:35	ICP-MS6 166SMPL.d	310050
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.8		0.50	1		01/27/2025 15:52
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	98		70-130)		01/27/2025 15:52
Analyst(s): AL						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/24/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals Client ID Lab ID Matrix **Date Collected Batch ID Instrument** S-1-3@6" DUP 2501D62-010A Soil 01/23/2025 09:37 ICP-MS6 167SMPL.d 310050 Result <u>RL</u> DF **Date Analyzed Analytes** 0.50 Arsenic 4.3 1 01/27/2025 15:55 Surrogates **REC (%) Limits** 01/27/2025 15:55 Terbium 101 70-130 Analyst(s): AL

Client ID	Lab ID	Matrix	Date Col	Date Collected In		Batch ID
RN-1@6"	2501D62-011A	Soil	01/23/202	5 08:04	ICP-MS6 190SMPL.d	310050
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	32		0.50	1		01/27/2025 17:16
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	94		70-130	ı		01/27/2025 17:16
Analyst(s): DB						

Client ID	Lab ID	Lab ID Matrix		llected	Instrument	Batch ID
RS-1@6"	2501D62-015A	2501D62-015A Soil		5 09:15	ICP-MS6 191SMPL.d	310050
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	17		0.50	1		01/27/2025 17:20
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	105		70-130)		01/27/2025 17:20
Analyst(s): DB						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 01/23/2025 17:03

Date Prepared: 01/24/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

	Metals									
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID				
RN-1@6" (dup)	2501D62-019A	Soil	01/23/2025	5 08:58	ICP-MS6 192SMPL.d	310050				
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed				
Lead	40		0.50	1		01/27/2025 17:23				
Surrogates	<u>REC (%)</u>		<u>Limits</u>							
Terbium	101		70-130			01/27/2025 17:23				
Analyst(s): DB										

Client ID	Lab ID Matrix		Date Col	lected	Instrument	Batch ID
RE-1@6"	2501D62-020A	Soil	01/23/202	5 08:35	ICP-MS4 120SMPL.d	310057
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	44		0.50	1		01/27/2025 13:24
Surrogates	REC (%)		<u>Limits</u>			
Terbium	105		70-130			01/27/2025 13:24
Analyst(s): WV						

Client ID	Lab ID	Lab ID Matrix		lected	Instrument	Batch ID
RW-1@6"	2501D62-024A	Soil	01/23/2025	5 07:56	ICP-MS6 193SMPL.d	310057
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	40		0.50	1		01/27/2025 17:27
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	97		70-130			01/27/2025 17:27
Analyst(s): DB						

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 01/23/2025

Date Analyzed: 01/27/2025 - 01/28/2025

Instrument: GC40 **Matrix:** Soil

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62 **BatchID:** 310055

Extraction Method: SW3550B

Analytical Method: SW8081B **Unit:** mg/kg

Sample ID: MB/LCS/LCSD-310055

2501D62-001AMS/MSD

	QC Summary	Report for SV	V8081B			
Analyte	MB Result	MDL	RL	SPK Val	MB IS/SS %REC	MB IS/SS Limits
Aldrin	ND	0.00042	0.0010	-	-	-
a-BHC	ND	0.00045	0.0010	-	-	-
b-BHC	ND	0.00038	0.0010	-	-	-
d-BHC	ND	0.00036	0.0010	-	-	-
g-BHC	ND	0.00036	0.0010	-	-	-
Chlordane (Technical)	ND	0.010	0.025	-	-	-
a-Chlordane	ND	0.00035	0.0010	-	-	-
g-Chlordane	ND	0.00067	0.0010	-	-	-
p,p-DDD	ND	0.00057	0.0010	-	-	-
p,p-DDE	ND	0.00034	0.0010	-	-	-
p,p-DDT	ND	0.00043	0.0010	-	-	-
Dieldrin	ND	0.00041	0.0010	-	-	-
Endosulfan I	ND	0.00040	0.0010	-	-	-
Endosulfan II	ND	0.00051	0.0010	-	-	-
Endosulfan sulfate	ND	0.00040	0.0010	-	-	-
Endrin	ND	0.00045	0.0010	-	-	-
Endrin aldehyde	ND	0.00045	0.0010	-	-	=
Endrin ketone	ND	0.00042	0.0010	-	-	=
Heptachlor	ND	0.00067	0.0010	-	-	-
Heptachlor epoxide	ND	0.00041	0.0010	-	-	-
Hexachlorobenzene	ND	0.00038	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.00064	0.020	-	-	-
Methoxychlor	ND	0.00063	0.0010	-	-	-
Toxaphene	ND	0.064	0.20	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.041			0.05	81	70-130

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 01/23/2025

Date Analyzed: 01/27/2025 - 01/28/2025

Instrument: GC40 **Matrix:** Soil

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62 **BatchID:** 310055

Extraction Method: SW3550B

Analytical Method: SW8081B **Unit:** mg/kg

Sample ID: MB/LCS/LCSD-310055

2501D62-001AMS/MSD

QC Summary Report for SW8081B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.043	0.043	0.050	86	85	70-130	1.20	20
a-BHC	0.044	0.044	0.050	89	87	70-130	1.43	20
b-BHC	0.045	0.044	0.050	90	87	70-130	3.09	20
d-BHC	0.043	0.041	0.050	86	83	70-130	3.28	20
g-BHC	0.045	0.044	0.050	90	88	70-130	2.40	20
a-Chlordane	0.047	0.046	0.050	94	92	70-130	2.25	20
g-Chlordane	0.046	0.045	0.050	92	91	70-130	0.964	20
p,p-DDD	0.047	0.047	0.050	95	93	70-130	1.65	20
p,p-DDE	0.050	0.048	0.050	100	96	70-130	3.78	20
p,p-DDT	0.053	0.050	0.050	105	101	70-130	4.35	20
Dieldrin	0.048	0.047	0.050	96	95	70-130	1.53	20
Endosulfan I	0.051	0.050	0.050	102	100	70-130	1.69	20
Endosulfan II	0.048	0.048	0.050	97	95	70-130	1.78	20
Endosulfan sulfate	0.051	0.049	0.050	102	99	70-130	3.16	20
Endrin	0.055	0.053	0.050	109	107	70-130	2.29	20
Endrin aldehyde	0.047	0.045	0.050	94	91	70-130	3.66	20
Endrin ketone	0.047	0.045	0.050	94	90	70-130	4.50	20
Heptachlor	0.048	0.047	0.050	95	94	70-130	1.37	20
Heptachlor epoxide	0.051	0.051	0.050	103	101	70-130	1.11	20
Hexachlorobenzene	0.043	0.042	0.050	86	84	70-130	2.19	20
Hexachlorocyclopentadiene	0.071	0.068	0.050	142,F2	137,F2	50-130	4.09	20
Methoxychlor	0.055	0.052	0.050	111	104	70-130	6.11	20

Decachlorobiphenyl 0.042 0.040 0.050 85 80 70-130 5.34 20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aldrin	1	0.041	0.041	0.050	ND	82	81	60-130	0.566	20
a-BHC	1	0.043	0.042	0.050	ND	86	84	60-130	1.41	20
b-BHC	1	0.042	0.042	0.050	ND	84	83	60-130	0.866	20
d-BHC	1	0.041	0.040	0.050	ND	82	81	60-130	1.13	20
g-BHC	1	0.039	0.039	0.050	ND	79	77	60-130	1.51	20
a-Chlordane	1	0.048	0.048	0.050	0.002775	90	90	60-130	0.665	20
g-Chlordane	1	0.051	0.050	0.050	0.003634	88	87	60-130	0.940	20
p,p-DDD	1	0.054	0.054	0.050	0.006823	94	95	60-130	1.03	20
p,p-DDE	1	0.36	0.36	0.050	0.3760	F1	F1	60-130	NA	20

(Cont.)

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 01/23/2025

Date Analyzed: 01/27/2025 - 01/28/2025

Instrument: GC40 **Matrix:** Soil

Surrogate Recovery

Decachlorobiphenyl

Project: 2024-12-14; Madera Drive Property

 WorkOrder:
 2501D62

 BatchID:
 310055

Extraction Method: SW3550B **Analytical Method:** SW8081B

89

91

60-130

2.30

Unit: mg/kg

Sample ID: MB/LCS/LCSD-310055

2501D62-001AMS/MSD

	(QC Sum	mary Rep	ort for	SW8081E	3				
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
p,p-DDT	1	0.16	0.16	0.050	0.1102	100	97	60-130	0.915	20
Dieldrin	1	0.049	0.049	0.050	ND	98	98	60-130	0.187	20
Endosulfan I	1	0.050	0.050	0.050	ND	100	100	60-130	0.468	20
Endosulfan II	1	0.051	0.050	0.050	ND	102	100	60-130	1.97	20
Endosulfan sulfate	1	0.050	0.051	0.050	ND	101	102	60-130	1.26	20
Endrin	1	0.053	0.053	0.050	ND	106	106	60-130	0.248	20
Endrin aldehyde	1	0.047	0.048	0.050	ND	95	96	60-130	1.64	20
Endrin ketone	1	0.047	0.048	0.050	ND	95	96	60-130	1.57	20
Heptachlor	1	0.046	0.046	0.050	ND	92	92	60-130	0.156	20
Heptachlor epoxide	1	0.049	0.049	0.050	ND	98	97	60-130	0.482	20
Hexachlorobenzene	1	0.043	0.043	0.050	ND	86	86	60-130	0.504	20
Hexachlorocyclopentadiene	1	0.068	0.068	0.050	ND	137,F1	136,F1	50-130	0.812	20
Methoxychlor	1	0.063	0.063	0.050	ND	127	126	60-130	0.742	20

0.045

1

0.046

0.050

20

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 01/24/2025Date Analyzed: 01/27/2025Instrument: ICP-MS4Matrix: Soil

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62 **BatchID:** 310050

Extraction Method: SW3050B **Analytical Method:** SW6020

Unit: mg/kg

Sample ID: MB/LCS/LCSD-310050

2501D62-001AMS/MSD

		QC Su	mmary R	eport fo	r Metals					
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC	MB Limi	IS/SS its
Arsenic		ND		0.10	0.50		-	-	-	
Lead		ND		0.11	0.50		-	-	-	
Surrogate Recovery										
Terbium		520					500	104	70-	-130
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic		51	51	50		103	103	75-125	0.00195	20
Lead		49	51	50		97	102	75-125	5.23	20
Surrogate Recovery										
Terbium		500	520	500		101	103	70-130	2.53	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Arsenic	1	58	60	50	7.658	101	104	75-125	2.47	20
Lead	1	86	92	50	35.14	101	114	75-125	7.15	20
Surrogate Recovery										
Terbium	1	510	510	500		101	103	70-130	1.17	20
Analyte		DLT Result			DLTRef Val				%D	%D Limit
Arsenic		7.7			7.7				1.07	
Lead		34			35				3.60	20

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Unit:

Client: Enviro Asssessment PC

Date Prepared: 01/24/2025Date Analyzed: 01/27/2025Instrument: ICP-MS4Matrix: Soil

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62 **BatchID:** 310057

Extraction Method: SW3050B **Analytical Method:** SW6020

Sample ID: MB/LCS/LCSD-310057

2501D62-020AMS/MSD

		QC Su	mmary R	eport fo	r Metals					
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC		IS/SS nits
Arsenic		ND		0.10	0.50		-	-	-	
Lead		ND		0.11	0.50		-	-	-	
Surrogate Recovery										
Terbium		550					500	110	7	0-130
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic		51	52	50		103	104	75-125	0.696	20
Lead		50	51	50		100	101	75-125	1.63	20
Surrogate Recovery										
Terbium		520	510	500		103	102	70-130	1.50	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Arsenic	1	56	57	50	7.561	97	99	75-125	1.67	20
Lead	1	94	92	50	43.88	100	96	75-125	2.36	20
Surrogate Recovery										
Terbium	1	470	500	500		94	100	70-130	6.32	20
Analyte		DLT Result			DLTRef Val				%D	%D Limit
Arsenic		7.8			7.6				3.23	_
Lead		43			44				2.84	20

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Email:

Project:

PO:

CHAIN-OF-CUSTODY RECORD

1 of 2

1534 Willow Pass Rd
Pittsburg, CA 94565-170
(925) 252-9262

□WaterTrax CLIP □ EDF **EQuIS** Dry-Weight

james@enviroassess.com cc/3rd Party: service@enviroassessment.com;

2024-12-14; Madera Drive Property

ClientCode: EAVS □ Email ☐ HardCopy

☐ ThirdParty □ J-flag

Requested TAT:

Detection Summary

WorkOrder: 2501D62

Excel

5 days;

Report to:

James Robinson Enviro Asssessment PC 1869 E Seltice Way #570

Post Falls, ID 83854

877-629-6838 FAX: 877-623-5493 Bill to:

James Robinson

Enviro Assess 1869 E Seltice Way #570

01/23/2025 Date Received: Post Falls, ID 83854 Date Logged: 01/23/2025

james@enviroassess.com; fabiola@env

								Requ	uested	Tests ((See le	gend b	elow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2501D62-001	S-1-1@6"	Soil	1/23/2025 09:04		Α	Α	Α									
2501D62-002	S-1-1@2'	Soil	1/23/2025 10:10		Α	Α	Α									
2501D62-003	S-1-2@6"	Soil	1/23/2025 09:30		Α	Α	Α									
2501D62-004	S-1-2@2'	Soil	1/23/2025 10:50		Α	Α	Α									
2501D62-005	S-1-3@6"	Soil	1/23/2025 09:35		Α	Α	Α									
2501D62-006	S-1-3@2'	Soil	1/23/2025 10:40		Α	Α	Α									
2501D62-007	S-1-4@6"	Soil	1/23/2025 09:45		Α	Α	Α									
2501D62-008	S-1-4@2'	Soil	1/23/2025 10:17		Α	Α	Α									
2501D62-009	S-1 @2'	Soil	1/23/2025 10:35		Α	Α	Α									
2501D62-010	S-1-3@6" DUP	Soil	1/23/2025 09:37		Α	Α	Α									
2501D62-011	RN-1@6"	Soil	1/23/2025 08:04		Α	Α	Α									
2501D62-012	RN-1@2'	Soil	1/23/2025 08:56	✓			Α	Α								
2501D62-013	RN-2@6"	Soil	1/23/2025 08:17	✓			Α	Α								
2501D62-014	RN-2@2'	Soil	1/23/2025 09:09	✓			Α	Α								
2501D62-015	RS-1@6"	Soil	1/23/2025 09:15		Α	Α	Α									

Test Legend:

1	8081_S
5	
9	

2	METALSMS_TTLC_S
6	
10	

3	PRDisposal Fee	
7		
11		

4	PRHOLD
8	
12	

Prepared by: Emily Perez

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

2 of 2

(925) 252-9262

□WaterTrax CLIP □ EDF **EQuIS** Dry-Weight Detection Summary

Bill to:

WorkOrder: 2501D62

□Email ☐ HardCopy Excel

ClientCode: EAVS

☐ ThirdParty

□ J-flag

5 days;

Report to:

FAX: 877-623-5493

PO:

Email: james@enviroassess.com cc/3rd Party: service@enviroassessment.com;

James Robinson **Enviro Assess**

01/23/2025 Date Received:

1869 E Seltice Way #570 Post Falls, ID 83854

Enviro Asssessment PC

James Robinson

877-629-6838

Project: 2024-12-14; Madera Drive Property

1869 E Seltice Way #570 Post Falls, ID 83854 Date Logged: 01/23/2025

Requested TAT:

james@enviroassess.com; fabiola@env

								Requ	ested	Tests ((See le	gend b	elow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2501D62-016	RS-1@2'	Soil	1/23/2025 09:55	•			Α	Α								
2501D62-017	RS-2@6"	Soil	1/23/2025 09:20	✓			Α	Α								
2501D62-018	RS-2@2'	Soil	1/23/2025 09:50	✓			Α	Α								
2501D62-019	RN-1@6" (dup)	Soil	1/23/2025 08:58		Α	Α	Α									
2501D62-020	RE-1@6"	Soil	1/23/2025 08:35		Α	Α	Α									
2501D62-021	RE-1@2'	Soil	1/23/2025 08:45	✓			Α	Α								
2501D62-022	RE-2@6"	Soil	1/23/2025 08:40	✓			Α	Α								
2501D62-023	RE-2@2'	Soil	1/23/2025 08:50	✓			Α	Α								
2501D62-024	RW-1@6"	Soil	1/23/2025 07:56		Α	Α	Α									
2501D62-025	RW-1@2'	Soil	1/23/2025 08:22	✓			Α	Α								
2501D62-026	RW-2@6"	Soil	1/23/2025 08:14	✓			Α	Α								
2501D62-027	RW-2@2'	Soil	1/23/2025 08:34	✓			Α	Α								
2501D62-028	RW-2@6"(dup)	Soil	1/23/2025 08:41	✓			Α	Α								

Test Legend:

1	8081_S
5	
9	

2	METALSMS_TTLC_S
6	
10	

3	PRDisposal Fee	
7		
11		

4	PRHOLD
8	
12	

Prepared by: Emily Perez

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	ENVIRO ASSSESSMENT PC	Project:	2024-12-14; Madera Drive Prop	perty	Work Order: 2501D62
--------------	-----------------------	----------	-------------------------------	-------	---------------------

Client Contact: James Robinson

QC Level: LEVEL 2

Contact's Email: james@enviroassess.com

Comments:

Date Logged: 1/23/2025

	Water	Trax CLIP	EDF	[Excel	EQuI	S	Ema	il HardCopy	Third	lPartyJ-flag	9	
LabID ClientSampID	Matrix	Test Name		Cont./ Comp.	Bottle & Preservativ			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Hold St Content O	ub Out
001A S-1-1@6"	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 9:04	5 days	1/30/2025		
		SW8081B (OC Pesticides)								5 days	1/30/2025		
002A S-1-1@2'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 10:10	5 days	1/30/2025		\equiv
		SW8081B (OC Pesticides)								5 days	1/30/2025		
003A S-1-2@6"	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 9:30	5 days	1/30/2025		\Box
		SW8081B (OC Pesticides)								5 days	1/30/2025		
004A S-1-2@2'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 10:50	5 days	1/30/2025		
		SW8081B (OC Pesticides)								5 days	1/30/2025		
005A S-1-3@6"	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 9:35	5 days	1/30/2025		
		SW8081B (OC Pesticides)								5 days	1/30/2025		
006A S-1-3@2'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	Small			1/23/2025 10:40	5 days	1/30/2025		
		SW8081B (OC Pesticides)								5 days	1/30/2025		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-14; Madera Drive Property	Work Order: 2501D62
---	---------------------

Client Contact: James Robinson

QC Level: LEVEL 2

Contact's Email: james@enviroassess.com

Comments:

Date Logged: 1/23/2025

	Water	Trax CLIP	EDF	[Excel	EQul	S	Ema	il HardCopy	Third	IParty ☐J-flaç	9
LabID ClientSampID	Matrix	Test Name		Cont./	Bottle & Preservative	U**		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Hold Sul Content Ou
007A S-1-4@6"	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, St	mall 🔲			1/23/2025 9:45	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	
008A S-1-4@2'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	mall			1/23/2025 10:17	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	
009A S-1 @2'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	mall 🔲			1/23/2025 10:35	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	
010A S-1-3@6" DUP	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, S	mall			1/23/2025 9:37	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	
011A RN-1@6"	Soil	SW6020 (Metals) <lead></lead>		1	Plastic Baggie, S	mall			1/23/2025 8:04	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	
015A RS-1@6"	Soil	SW6020 (Metals) <lead></lead>		1	Plastic Baggie, St	mall			1/23/2025 9:15	5 days	1/30/2025	
		SW8081B (OC Pesticides)								5 days	1/30/2025	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-14; Madera Drive Property Work Order: 2501D62

Client Contact: James Robinson

QC Level: LEVEL 2

Contact's Email: james@enviroassess.com

Comments:

Date Logged: 1/23/2025

		Water	Trax CLIP	EDF		Excel [EQuIS	Emai	HardCopy	Third	Party J-flag)	
LabID	ClientSampID	Matrix	Test Name		Cont./ Comp.	Bottle & Preservative		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
019A	RN-1@6" (dup)	Soil	SW6020 (Metals) <lead></lead>		1	Plastic Baggie, Sn	nall 🗌		1/23/2025 8:58	5 days	1/30/2025		
			SW8081B (OC Pesticides)							5 days	1/30/2025		
020A	RE-1@6"	Soil	SW6020 (Metals) <lead></lead>		1	Plastic Baggie, Sn	nall 🗌		1/23/2025 8:35	5 days	1/30/2025		
			SW8081B (OC Pesticides)							5 days	1/30/2025		
024A	RW-1@6"	Soil	SW6020 (Metals) <lead></lead>		1	Plastic Baggie, Sn	nall 🗌		1/23/2025 7:56	5 days	1/30/2025		
			SW8081B (OC Pesticides)							5 days	1/30/2025		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

McCAM	PBELL	ANA	LY	TICAL	, INC.					(CHAIN OF C	UST	DDY I	REC	COR	D			
1534	Willow Pass	Rd. Pittsbur	g, Ca.	94565-1701		Turn	Arou	nd Tim	ne:1 Day Rush		2 Day Rush	3 Day	Rush		STD	•	Quot	e #	
Telep	ohone: (877) 2	52-9262 / F	ax: (92	5) 252-9269	15	J-Flag	g / MD	L	ESL		Cleanup Approved		Dry We	eight		Bott	le Orde	r#	
www.mccam	pbell.com	m	ain@n	nccampbell	.com	Deliv	ery Fo	ormat:	PDF	Geo	oTracker EDF	EDD		Wri	ite On ((DW)		Detect Su	mmary
Report To: James Robinson		Bill To	James	Robinson							Analys	is Re	queste	d			Investor mareletons	to the control of the	
Company: Enviro Assessment, PC																			
Email: james@enviroassessment.com														- 1					
Alt Email: Service@enviroassessment.	com	Tele		844-742-7					ES										
roject Name: Madera Drive Property		Project #:		2024-12-	014				SAMPL										
roject Location: Cupertino CA	1	PO #	!	4-1					₹										
ampler Signature: Swell Ash			T 20		Т		<u>0</u>		1 55.00										
SAMPLE ID Location / Field Point	Date	Time	#Containers	Matrix	Preservative	OCPs	Arsenic	Lead	HOLD										
G-1-1@6"	1/23/25	0904	1	Soil	ice	10	•	一	十一	-		_	-	-		\dashv	\vdash		+
S-1-1@2'	1/23/25	1010	1	Soil	ice			T	++-	\vdash				\dashv	\neg	\dashv		+	++
S-1-2@6"	1/23/25	-	1	Soil	ice	0	•	T		\vdash			$\neg \dagger$	\neg	\neg	\neg	\vdash	+	++
G-1-2@2'	1/23/25	1050	1	Soil	ice		•	\dagger	\top				十	\dashv		\neg		+	
G-1-3@6"	1/23/25		1	Soil	ice		•						\neg	\forall		\neg		\top	
G-1-3@2'	1/23/25	1040	1	Soil	ice		•	T					\neg			\neg		\top	
6-1-4@6"	1/23/25	6945	1	Soil	ice		•							\neg					
6-1-4@2'	1/23/25	1017	1	Soil	ice	•	•												
S-1 @ 2'	1/23/25	1035	1	Soil	ice		•				400								
S-1-3@6" (DUP)	1/23/25	6937	1	Soil	ice		•								T	77			
Al clients MUST disclose any dangerous chemic fon-disclosure incurs an immediate \$250 surcharge	cals known to be p	present in their s subject to full	submitte l legal lia	d samples in co	oncentrations that suffered. Thank	at may o	cause in	mmedia underst	ate harm or seri	ous fut allowin	ure health endangermong us to work safely.	ent as a	result of t	orief, g	gloved,	open a	ir, sample	handling	by MAI staff.
If metals are requested for water samples an	nd the water type	e (Matrix) is	not spec	ified on the cl	hain of custody	y, MAI	will d	lefault	to metals by I	E200.8	3.			Т		Co	omments	Instruct	ions
ease provide an adequate volume of sample	A STATE OF THE PARTY OF THE PAR	is not sufficie	ent for a	MS/MSD a L	CS/LCSD will	l be pre	A - 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Out of the second of the second	The same of the sa	STATE WASH	THE RESERVE OF THE PERSON OF T				NO	ESI	L		
Relinquished By / Compa					ime		Rece	ived B	y/Company	Name		ate	Tim						
Steven Ashe / Burio Assess	went pe	•	1/23	125 /	203	_	_6	1	1/1	15	- 1/2	3/25	17	25					
					-									\dashv					
Matrix Code: DW=Drinking Water,	GW=Group	d Water W	/\\/_\\	Insta Water	SW-Soon	entor	C-C	;1 CI	-Cludes	Λ – Λ :	in WP-Wing O	-Oth		\dashv					
reservative Code: 1=4°C 2=HCl									L-Sludge, A	A-AI	ii, wr-wipe, O	-Ome		L emp	3	-	IC.	Initials	4
2 1101		-11.03	2 110		- 57 10/11401	- /	1 101						10	p_			18/2		
																/	12.7	Page	1 of 3
- A - 6																		1 age	
and a																			Page 3

McCAMP	McCAMPBELL ANALYTICAL, 1534 Willow Pass Rd. Pittsburg, Ca. 94565-1701										СНА	IN OF C	UST	ODY	RE	COR	D				
1534 V	Villow Pass	Rd. Pittsbur	g, Ca.	94565-1701		Turn	Aroun	d Tim	:1 Day	y Rush	2 Day	y Rush	3 Day	Rush		STD	•	Quo	te#		
Teleph	one: (877) 2	52-9262 / F	ax: (92	25) 252-9269		J-Flag	/ MDL	-	ESL		Clean	up Approved		Dry V	Veight		Bott	le Ord			
www.mccample	ell.com	ma	nin@n	nccampbell	.com	Deliv	ery Fo	rmat:	PDF		GeoTracke	er EDF	EDD		Wr	rite On	(DW)	П	Detect	Summa	ary
Report To: James Robinson	MILES AND AND ADDRESS OF THE PARTY OF THE PA	Bill To:	James	s Robinson		T	A CONTRACTOR OF THE PARTY OF TH			NAME OF TAXABLE PARTY.		Analys	is Re	quest	ed	THE REAL PROPERTY.		-			
Company: Enviro Assessment, PC	4.4							1					Π					П	T	T	T
Email: james@enviroassessment.com (N	New Email)				, A																
Alt Email: Service@enviroassessment.co	m	Tele:		844-742-7	311				ES												
Project Name: Madera Drive Property		Project #:		2024-12-	014																
Project Location: Cupertino, CA		PO #							SAMPL												
Sampler Signature: Skeen Arve			,				O		SA												
SAMPLE ID	Sam	pling	iners			က္ခ	eni(9	Q				1								
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	OCPs	Arsenic	Lead	HOLD												
RN-1@6"	1/23/25	6904	1	Soil	ice	•		•													
RN-1@2'	1/23/25	0556	1	Soil	ice																
RN-2@6"	1/23/25	6817	1	Soil	ice																
RN-2@2'	1/23/25	6909	1	Soil	ice			-													
RS-1@6"	1/23/25	0915	1	Soil	ice	0		•													
RS-1@2'	1/23/21	0955	1	Soil	ice		1		•								1				
RS-2@6"	16/23/21	0920	1	Soil	ice				•												
RS-2@2'	1/23/25	0950	1	Soil	ice	100			•												
RN-1@6" (dup)	1/23/25	0858	1	Soil	ice	•		•													
		4		3	頭		-														
MAI clients MUST disclose any dangerous chemical Non-disclosure incurs an immediate \$250 surcharge	s known to be p and the client is	present in their s subject to full	submitte legal lia	ed samples in co ability for harm	oncentrations that suffered. Thank	t may c	ause in	nmedia ındersta	te harm	or serio	ous future heal	th endangerm work safely.	ent as a	result o	f brief,	gloved	, open a	air, samp	le handli	ng by M.	AI staff.
* If metals are requested for water samples and																	Co	omment	s / Instru	ctions	
Please provide an adequate volume of sample.		is not sufficie	nt for a	MS/MSD a L	.CS/LCSD will	be pre	pared	in its p	lace ar	nd note	ed in the repo	ort.				NO	ES	L			
Relinquished By / Compan			-		ime		Recei	iyed B	/ Con	apany 1	Name		ate		me						
Sleich Ashe/Enviro Assessu	cut pe		1/2	3/25 /70	23	5	1	11	K,	-	My	1/2.	7/25	12	03						
			-						_												
Matrix Codes DW-Drinking Water C	W-C-	1 Weter W	/33/_33	In ata Water	CIV. C		0.0	:1 CT	CI	1	A : 1377) N/i O	0/1								
Matrix Code: DW=Drinking Water, G Preservative Code: 1=4°C 2=HCl									=Sluc	uge, A	A=Air, Wi	=wipe, O	=Oth		`anar			°C	Initia	le.	1
2-11Ci	3 112504	4-1111O3	3-146	OII U-ZI	IOAC/NaOI	1 /-	TNOIL							1	emp				шппа		

Mc Mc	CAMP	BELL	ANA	LYT	TICAL	, INC.						СНА	IN OF C	UST	ODY	REC	COR	D					
	1534 W	illow Pass I	Rd. Pittsbur	g, Ca.	94565-1701		Turn .	Aroun	d Tim	e:1 Day	Rush	2 Da	y Rush	3 Day	Rush		STD	•	Quo	ote#			and makes
	Telepho	ne: (877) 2:	52-9262 / F	ax: (92	5) 252-9269		J-Flag	/ MDL	-	ESL		Clean	up Approved		Dry W	/eight		Bott	le Oro	ler#			
<u>ww</u>	vw.mccampbe	ell.com	<u>m</u> :	ain@n	nccampbell.	com	Deliv	ery Fo	rmat:	PDF		GeoTrack	er EDF	EDD		Wri	ite On	(DW)	П	Detec	t Sum	mary	
Report To: James Robinson			Bill To:	James	Robinson								Analys	is Re	quest	ed			Accessor and the second				
Company: Enviro Assessmen	nt, PC																						
Email: james@enviroassess	sment.com (No	ew Email)																					
Alt Email: Service@enviroa	ssessment.con	n	Tele		844-742-7	311				ES													
Project Name: Madera Drive	Property		Project #:		2024-12-0	014				긥													
Project Location: Cupertino			PO#	ŧ						SAMPL													
Sampler Signature: Saw	cu Ashe	y 2000						b															
SAMPLE ID	a l	Sam	pling	#Containers	Matrix	Preservative	Ps	eni	l g														
Location / Field P	Point	Date	Time	#Cont	Wattix	rieservative	OCP	Arsenic	Lead	HOLD													
RE-1@6"		1/23/25	0756 D	235	Soil	ice	•		•														
RE-1@2'		1/23/25	0945	1	Soil	ice				•													
RE-2@6"		1/23/25	-08140	149	Soil	ice				•													
RE-2@2'		1/23/25	0gs0	1	Soil	ice				•													
RW-1@6"		1/23/25	0756	1	Soil	ice	•		•														
RW-1@2'		1/23/25	0922	1	Soil	ice				•													
RW-2@6"		1/23/25	0914	1	Soil	ice				•													
RW-2@2'		1/23/25	6834	1	Soil	ice				•													
RW-2@6" (dup)		1/23/25	0841	1	Soil	ice				•													
						1																	
MAI clients MUST disclose any dar Non-disclosure incurs an immediate														ent as a	result of	f brief,	gloved,	open a	air, samp	ole handl	ling by	MAI s	taff.
* If metals are requested for water	er samples and t	he water type	(Matrix) is	not spec	ified on the ch	nain of custody	, MAI	will d	efault	to meta	ls by E	2200.8.				T		Co	omment	s / Instr	ruction	ıs	
Please provide an adequate volu-	me of sample. If	the volume i	s not sufficie	ent for a	MS/MSD a L	CS/LCSD will	be pre	pared	in its p	lace ar	nd note	ed in the repo	ort.				NO	ES	L				
	d By / Company					ime	1	Recei	ived B	y / Con	npany	Name	D	ate	Tir								
SEUCH Ashe/ENVII	o Assessue	nt pc		1/23	25 /7	03 /		N	K	(24	_	1/23	125	17	03							
												•		2									
				<u> </u>											L								
Matrix Code: DW=Drinki										=Slu	dge, A	A=Air, WI	P=Wipe, O	=Oth		l				¥ 1,1			
Preservative Code: 1=4°C	2=HCl 3	$=H_2SO_4$	$4=HNO_3$	5=Na	iOH 6=Zi	iOAc/NaOF	1 7=	=Non	e						Т	emp			°C	Initia	ais -		

Sample Receipt Checklist

Client Name: Project: WorkOrder №: Carrier:	Enviro Asssessment PC 2024-12-14; Madera Drive Property 2501D62 Matrix: Soil Client Drop-In			Date and Tim Date Logged Received by: Logged by:		1/23/2025 17:03 1/23/2025 Lilly Ortiz Emily Perez
		of Custody	/ (CO(C) Information		
Chain of custody		Yes	✓	No \square		
	y signed when relinquished and received?	Yes	✓	No \square		
	y agrees with sample labels?	Yes	✓	No \square		
	ed by Client on COC?	Yes	✓	No 🗆		
	of collection noted by Client on COC?	Yes	✓	No 🗆		
	noted on COC?	Yes	✓	No 🗆		
COC agrees with		Yes		No 🗆	NA 🗸	
	San	nple Rece	eipt In	formation_		
Custody seals in	ntact on shipping container/cooler?	Yes		 No 🗆	NA 🗸	
Custody seals in	ntact on sample bottles?	Yes		No 🗌	NA 🗸	
Shipping contain	ner/cooler in good condition?	Yes	✓	No 🗌		
Samples in prop	er containers/bottles?	Yes	✓	No 🗆		
Sample containe	ers intact?	Yes	✓	No 🗆		
Sufficient sample	e volume for indicated test?	Yes	•	No 🗌		
	Sample Preserv	ation and	Hold	Time (HT) Information		
All samples rece	eived within holding time?	Yes	✓	No 🗆	NA 🗌	
Samples Receiv	red on Ice?	Yes	✓	No 🗌		
	(Ice T	ype: WE	T ICE)		
Sample/Temp B	lank temperature		Т	emp: 3.4°C	NA 🗌	
	analyses: VOA meets zero headspace CS, TPHg/BTEX, RSK)?	Yes		No 🗌	NA 🗹	
Sample labels cl	hecked for correct preservation?	Yes	✓	No 🗌		
pH acceptable u	pon receipt (Metal: <2)?	Yes		No 🗌	NA 🗹	
UCMR Samples pH tested and 537.1: 6 - 8)?	<u>:</u> acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗹	
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗌	NA 🗹	
Comments:	=======================================			=======		======

"When Quality Counts"

Analytical Report

WorkOrder: 2501D62 A

Report Created for: Enviro Asssessment PC

1869 E Seltice Way #570

Post Falls, ID 83854

Project Contact: James Robinson

Project P.O.:

Project: 2024-12-14; Madera Drive Property

Project Location: Cupertino, CA

Project Received: 01/23/2025

Analytical Report reviewed & approved for release on 02/10/2025 by:

Tray Bosion

Tracy Babjar

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2501D62 A

Project: 2024-12-14; Madera Drive Property

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹
ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2501D62 A

Project: 2024-12-14; Madera Drive Property

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

P Agreement between the quantitative dual-column confirmation results exceed method recommended limits of

40% RPD. The lowest concentration is reported.

S Surrogate recovery outside accepted recovery limits.

a2 Sample diluted due to cluttered chromatogram.

a3 Sample diluted due to high organic content interfering with quantitative/or qualitative analysis.

c4 Surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides											
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID					
RN-1@2'	2501D62-012A	Soil	01/23/2025	08:56	GC20 02062539.D	310633					
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed					
Aldrin	ND		0.0010	1		02/06/2025 22:01					
a-BHC	ND		0.0010	1		02/06/2025 22:01					
b-BHC	ND		0.0010	1		02/06/2025 22:01					
d-BHC	ND		0.0010	1		02/06/2025 22:01					
g-BHC	ND		0.0010	1		02/06/2025 22:01					
Chlordane (Technical)	0.18		0.025	1		02/06/2025 22:01					
a-Chlordane	0.021		0.0010	1		02/06/2025 22:01					
g-Chlordane	0.014	Р	0.0010	1		02/06/2025 22:01					
p,p-DDD	0.0060		0.0010	1		02/06/2025 22:01					
p,p-DDE	0.11		0.0010	1		02/06/2025 22:01					
p,p-DDT	0.022		0.0010	1		02/06/2025 22:01					
Dieldrin	0.0039		0.0010	1		02/06/2025 22:01					
Endosulfan I	0.013		0.0010	1		02/06/2025 22:01					
Endosulfan II	ND		0.0010	1		02/06/2025 22:01					
Endosulfan sulfate	ND		0.0010	1		02/06/2025 22:01					
Endrin	ND		0.0010	1		02/06/2025 22:01					
Endrin aldehyde	ND		0.0010	1		02/06/2025 22:01					
Endrin ketone	ND		0.0010	1		02/06/2025 22:01					
Heptachlor	ND		0.0010	1		02/06/2025 22:01					
Heptachlor epoxide	0.011		0.0010	1		02/06/2025 22:01					
Hexachlorobenzene	ND		0.010	1		02/06/2025 22:01					
Hexachlorocyclopentadiene	ND		0.020	1		02/06/2025 22:01					
Methoxychlor	ND		0.0010	1		02/06/2025 22:01					
Toxaphene	ND		0.20	1		02/06/2025 22:01					
Surrogates	<u>REC (%)</u>		<u>Limits</u>								
Decachlorobiphenyl	96		60-130			02/06/2025 22:01					
Analyst(s): CN											

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides												
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID						
RN-2@6"	2501D62-013	A Soil	01/23/2025	08:17	GC20 02062540.D	310633						
<u>Analytes</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed						
Aldrin	ND		0.0050	5		02/06/2025 22:15						
a-BHC	ND		0.0050	5		02/06/2025 22:15						
b-BHC	ND		0.0050	5		02/06/2025 22:15						
d-BHC	ND		0.0050	5		02/06/2025 22:15						
g-BHC	ND		0.0050	5		02/06/2025 22:15						
Chlordane (Technical)	ND		0.12	5		02/06/2025 22:15						
a-Chlordane	0.022		0.0050	5		02/06/2025 22:15						
g-Chlordane	0.012	Р	0.0050	5		02/06/2025 22:15						
p,p-DDD	ND		0.0050	5		02/06/2025 22:15						
p,p-DDE	0.15		0.0050	5		02/06/2025 22:15						
p,p-DDT	0.035		0.0050	5		02/06/2025 22:15						
Dieldrin	ND		0.0050	5		02/06/2025 22:15						
Endosulfan I	ND		0.0050	5		02/06/2025 22:15						
Endosulfan II	ND		0.0050	5		02/06/2025 22:15						
Endosulfan sulfate	ND		0.0050	5		02/06/2025 22:15						
Endrin	ND		0.0050	5		02/06/2025 22:15						
Endrin aldehyde	ND		0.0050	5		02/06/2025 22:15						
Endrin ketone	ND		0.0050	5		02/06/2025 22:15						
Heptachlor	ND		0.0050	5		02/06/2025 22:15						
Heptachlor epoxide	ND		0.0050	5		02/06/2025 22:15						
Hexachlorobenzene	ND		0.050	5		02/06/2025 22:15						
Hexachlorocyclopentadiene	ND		0.10	5		02/06/2025 22:15						
Methoxychlor	ND		0.0050	5		02/06/2025 22:15						
Toxaphene	ND		1.0	5		02/06/2025 22:15						
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>									
Decachlorobiphenyl	105		60-130			02/06/2025 22:15						
Analyst(s): CN			Analytical Com	ments: a3	3							

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides									
Client ID	Lab ID	Matrix	Date Collected 01/23/2025 09:09		Instrument	Batch ID			
RN-2@2'	2501D62-014	A Soil			GC20 02062541.D	310633			
<u>Analytes</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>DF</u>		Date Analyzed			
Aldrin	ND		0.0010	1		02/06/2025 22:30			
a-BHC	ND		0.0010	1		02/06/2025 22:30			
b-BHC	ND		0.0010	1		02/06/2025 22:30			
d-BHC	ND		0.0010	1		02/06/2025 22:30			
g-BHC	ND		0.0010	1		02/06/2025 22:30			
Chlordane (Technical)	ND		0.025	1		02/06/2025 22:30			
a-Chlordane	0.0018		0.0010	1		02/06/2025 22:30			
g-Chlordane	0.0011	Р	0.0010	1		02/06/2025 22:30			
p,p-DDD	ND		0.0010	1		02/06/2025 22:30			
p,p-DDE	0.015		0.0010	1		02/06/2025 22:30			
p,p-DDT	0.0036		0.0010	1		02/06/2025 22:30			
Dieldrin	ND		0.0010	1		02/06/2025 22:30			
Endosulfan I	0.0015	Р	0.0010	1		02/06/2025 22:30			
Endosulfan II	ND		0.0010	1		02/06/2025 22:30			
Endosulfan sulfate	ND		0.0010	1		02/06/2025 22:30			
Endrin	ND		0.0010	1		02/06/2025 22:30			
Endrin aldehyde	ND		0.0010	1		02/06/2025 22:30			
Endrin ketone	ND		0.0010	1		02/06/2025 22:30			
Heptachlor	ND		0.0010	1		02/06/2025 22:30			
Heptachlor epoxide	ND		0.0010	1		02/06/2025 22:30			
Hexachlorobenzene	ND		0.010	1		02/06/2025 22:30			
Hexachlorocyclopentadiene	ND		0.020	1		02/06/2025 22:30			
Methoxychlor	ND		0.0010	1		02/06/2025 22:30			
Toxaphene	ND		0.20	1		02/06/2025 22:30			
Surrogates	REC (%)		<u>Limits</u>						
Decachlorobiphenyl	93		60-130			02/06/2025 22:30			
Analyst(s): CN									

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides									
Client ID	Lab ID	Matrix	Date Collected 01/23/2025 09:55		Instrument	Batch ID			
RS-1@2'	2501D62-016A	A Soil			GC20 02062542.D	310633			
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed			
Aldrin	ND		0.0020	2		02/06/2025 22:45			
a-BHC	ND		0.0020	2		02/06/2025 22:45			
b-BHC	ND		0.0020	2		02/06/2025 22:45			
d-BHC	ND		0.0020	2		02/06/2025 22:45			
g-BHC	ND		0.0020	2		02/06/2025 22:45			
Chlordane (Technical)	0.47		0.050	2		02/06/2025 22:45			
a-Chlordane	0.054		0.0020	2		02/06/2025 22:45			
g-Chlordane	0.041	Р	0.0020	2		02/06/2025 22:45			
p,p-DDD	ND		0.0020	2		02/06/2025 22:45			
p,p-DDE	0.18		0.0020	2		02/06/2025 22:45			
p,p-DDT	0.052		0.0020	2		02/06/2025 22:45			
Dieldrin	0.020		0.0020	2		02/06/2025 22:45			
Endosulfan I	0.056	Р	0.0020	2		02/06/2025 22:45			
Endosulfan II	ND		0.0020	2		02/06/2025 22:45			
Endosulfan sulfate	ND		0.0020	2		02/06/2025 22:45			
Endrin	ND		0.0020	2		02/06/2025 22:45			
Endrin aldehyde	ND		0.0020	2		02/06/2025 22:45			
Endrin ketone	ND		0.0020	2		02/06/2025 22:45			
Heptachlor	ND		0.0020	2		02/06/2025 22:45			
Heptachlor epoxide	0.0052		0.0020	2		02/06/2025 22:45			
Hexachlorobenzene	ND		0.020	2		02/06/2025 22:45			
Hexachlorocyclopentadiene	ND		0.040	2		02/06/2025 22:45			
Methoxychlor	ND		0.0020	2		02/06/2025 22:45			
Toxaphene	ND		0.40	2		02/06/2025 22:45			
Surrogates	<u>REC (%)</u>		<u>Limits</u>						
Decachlorobiphenyl	108		60-130			02/06/2025 22:45			
Analyst(s): CN	Analytical Comments: a3								

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID Matrix **Date Collected** Instrument **Batch ID** RS-2@6" 2501D62-017A 01/23/2025 09:20 GC20 02062543.D 310633 Soil **Analytes** Result Qualifiers RL DF **Date Analyzed** ND 0.0010 02/06/2025 23:00 Aldrin 1 a-BHC ND 0.0010 1 02/06/2025 23:00 b-BHC ND 0.0010 02/06/2025 23:00 1 d-BHC ND 0.0010 1 02/06/2025 23:00 g-BHC ND 0.0010 02/06/2025 23:00 Chlordane (Technical) 1.1 0.25 10 02/10/2025 16:46 a-Chlordane 0.081 0.0010 1 02/06/2025 23:00 Р g-Chlordane 0.065 0.0010 1 02/06/2025 23:00 p,p-DDD 0.043 0.0010 1 02/06/2025 23:00 p,p-DDE 0.44 0.010 10 02/10/2025 16:46 p,p-DDT 0.0010 0.099 1 02/06/2025 23:00 Dieldrin 0.022 0.0010 02/06/2025 23:00 Ρ Endosulfan I 0.047 0.0010 1 02/06/2025 23:00 Endosulfan II ND 0.0010 02/06/2025 23:00 Endosulfan sulfate ND 0.0010 1 02/06/2025 23:00 Endrin ND 0.0010 1 02/06/2025 23:00 Endrin aldehyde ND 0.0010 1 02/06/2025 23:00 Endrin ketone ND 0.0010 1 02/06/2025 23:00 ND Heptachlor 0.0010 1 02/06/2025 23:00 Heptachlor epoxide 0.0057 Р 0.0010 1 02/06/2025 23:00 ND 0.010 1 Hexachlorobenzene 02/06/2025 23:00 Hexachlorocyclopentadiene ND 0.020 1 02/06/2025 23:00 ND 0.0010 1 02/06/2025 23:00 Methoxychlor Toxaphene ND 0.20 02/06/2025 23:00 Surrogates **REC (%) Limits** Decachlorobiphenyl 112 60-130 02/06/2025 23:00 Analyst(s): CN, EEV Analytical Comments: a2

Project:

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property **Unit:** mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID		
RS-2@2'	2501D62-018	A Soil	01/23/2025	09:50	GC20 02062544.D	310633		
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0050	5		02/06/2025 23:15		
a-BHC	ND		0.0050	5		02/06/2025 23:15		
b-BHC	ND		0.0050	5		02/06/2025 23:15		
d-BHC	ND		0.0050	5		02/06/2025 23:15		
g-BHC	ND		0.0050	5		02/06/2025 23:15		
Chlordane (Technical)	0.32		0.12	5		02/06/2025 23:15		
a-Chlordane	0.025		0.0050	5		02/06/2025 23:15		
g-Chlordane	0.023		0.0050	5		02/06/2025 23:15		
p,p-DDD	ND		0.0050	5		02/06/2025 23:15		
p,p-DDE	0.12		0.0050	5		02/06/2025 23:15		
p,p-DDT	0.027		0.0050	5		02/06/2025 23:15		
Dieldrin	0.0063		0.0050	5		02/06/2025 23:15		
Endosulfan I	0.016	Р	0.0050	5		02/06/2025 23:15		
Endosulfan II	ND		0.0050	5		02/06/2025 23:15		
Endosulfan sulfate	ND		0.0050	5		02/06/2025 23:15		
Endrin	ND		0.0050	5		02/06/2025 23:15		
Endrin aldehyde	ND		0.0050	5		02/06/2025 23:15		
Endrin ketone	ND		0.0050	5		02/06/2025 23:15		
Heptachlor	ND		0.0050	5		02/06/2025 23:15		
Heptachlor epoxide	ND		0.0050	5		02/06/2025 23:15		
Hexachlorobenzene	ND		0.050	5		02/06/2025 23:15		
Hexachlorocyclopentadiene	ND		0.10	5		02/06/2025 23:15		
Methoxychlor	ND		0.0050	5		02/06/2025 23:15		
Toxaphene	ND		1.0	5		02/06/2025 23:15		
Surrogates	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	99		60-130			02/06/2025 23:15		
Analyst(s): CN			Analytical Com	ments: a3	3			

2024-12-14; Madera Drive Property

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID Matrix **Date Collected** Instrument **Batch ID** RE-1@2' 2501D62-021A 01/23/2025 08:45 GC20 02062545.D 310633 Soil **Analytes** Result Qualifiers RL DF **Date Analyzed** ND 0.0020 2 02/06/2025 23:30 Aldrin a-BHC 2 ND 0.0020 02/06/2025 23:30 b-BHC ND 2 02/06/2025 23:30 0.0020 d-BHC ND 0.0020 2 02/06/2025 23:30 g-BHC ND 0.0020 02/06/2025 23:30 Chlordane (Technical) 2.6 0.25 10 02/07/2025 15:51 a-Chlordane 0.29 0.0020 2 02/06/2025 23:30 g-Chlordane 0.34 0.0020 2 02/06/2025 23:30 Ρ 2 p,p-DDD 0.047 0.0020 02/06/2025 23:30 p,p-DDE 0.24 0.0020 2 02/06/2025 23:30 p,p-DDT 0.0020 2 0.14 02/06/2025 23:30 Dieldrin 0.023 0.0020 2 02/06/2025 23:30 Endosulfan I ND 0.0020 2 02/06/2025 23:30 2 Endosulfan II ND 0.0020 02/06/2025 23:30 Endosulfan sulfate ND 0.0020 2 02/06/2025 23:30 Endrin 0.015 0.0020 2 02/06/2025 23:30 Endrin aldehyde ND 0.0020 2 02/06/2025 23:30 Endrin ketone ND 0.0020 2 02/06/2025 23:30 ND 2 Heptachlor 0.0020 02/06/2025 23:30 Heptachlor epoxide 0.0020 2 02/06/2025 23:30 0.029 ND 0.020 2 Hexachlorobenzene 02/06/2025 23:30 Hexachlorocyclopentadiene ND 0.040 2 02/06/2025 23:30 ND 0.0020 2 02/06/2025 23:30 Methoxychlor Toxaphene ND 0.40 2 02/06/2025 23:30 Surrogates **REC (%) Limits** Decachlorobiphenyl 111 60-130 02/06/2025 23:30 Analytical Comments: a2,a3 Analyst(s): CN

Project:

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property Unit: mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID		
RE-2@6"	2501D62-022	A Soil	01/23/2025	08:40	GC20 02062546.D	310633		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0050	5		02/06/2025 23:45		
a-BHC	ND		0.0050	5		02/06/2025 23:45		
b-BHC	ND		0.0050	5		02/06/2025 23:45		
d-BHC	ND		0.0050	5		02/06/2025 23:45		
g-BHC	ND		0.0050	5		02/06/2025 23:45		
Chlordane (Technical)	2.1		0.12	5		02/06/2025 23:45		
a-Chlordane	0.26		0.0050	5		02/06/2025 23:45		
g-Chlordane	0.22		0.0050	5		02/06/2025 23:45		
p,p-DDD	ND		0.0050	5		02/06/2025 23:45		
p,p-DDE	0.33		0.0050	5		02/06/2025 23:45		
p,p-DDT	0.086		0.0050	5		02/06/2025 23:45		
Dieldrin	0.087		0.0050	5		02/06/2025 23:45		
Endosulfan I	ND		0.0050	5		02/06/2025 23:45		
Endosulfan II	ND		0.0050	5		02/06/2025 23:45		
Endosulfan sulfate	ND		0.0050	5		02/06/2025 23:45		
Endrin	ND		0.0050	5		02/06/2025 23:45		
Endrin aldehyde	ND		0.0050	5		02/06/2025 23:45		
Endrin ketone	ND		0.0050	5		02/06/2025 23:45		
Heptachlor	ND		0.0050	5		02/06/2025 23:45		
Heptachlor epoxide	0.016		0.0050	5		02/06/2025 23:45		
Hexachlorobenzene	ND		0.050	5		02/06/2025 23:45		
Hexachlorocyclopentadiene	ND		0.10	5		02/06/2025 23:45		
Methoxychlor	ND		0.0050	5		02/06/2025 23:45		
Toxaphene	ND		1.0	5		02/06/2025 23:45		
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>					
Decachlorobiphenyl	142	S	60-130			02/06/2025 23:45		
Analyst(s): CN			Analytical Comi	ments: a3	3,c4			

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property Unit: mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID		
RE-2@2'	2501D62-023A	Soil	01/23/2025 (08:50	GC20 02062547.D	310633		
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0010	1		02/07/2025 00:00		
a-BHC	ND		0.0010	1		02/07/2025 00:00		
b-BHC	ND		0.0010	1		02/07/2025 00:00		
d-BHC	ND		0.0010	1		02/07/2025 00:00		
g-BHC	ND		0.0010	1		02/07/2025 00:00		
Chlordane (Technical)	0.17	Р	0.025	1		02/07/2025 00:00		
a-Chlordane	0.026		0.0010	1		02/07/2025 00:00		
g-Chlordane	0.022		0.0010	1		02/07/2025 00:00		
p,p-DDD	ND		0.0010	1		02/07/2025 00:00		
p,p-DDE	0.038		0.0010	1		02/07/2025 00:00		
p,p-DDT	0.0082		0.0010	1		02/07/2025 00:00		
Dieldrin	0.0097		0.0010	1		02/07/2025 00:00		
Endosulfan I	ND		0.0010	1		02/07/2025 00:00		
Endosulfan II	ND		0.0010	1		02/07/2025 00:00		
Endosulfan sulfate	ND		0.0010	1		02/07/2025 00:00		
Endrin	ND		0.0010	1		02/07/2025 00:00		
Endrin aldehyde	ND		0.0010	1		02/07/2025 00:00		
Endrin ketone	ND		0.0010	1		02/07/2025 00:00		
Heptachlor	ND		0.0010	1		02/07/2025 00:00		
Heptachlor epoxide	0.0016		0.0010	1		02/07/2025 00:00		
Hexachlorobenzene	ND		0.010	1		02/07/2025 00:00		
Hexachlorocyclopentadiene	ND		0.020	1		02/07/2025 00:00		
Methoxychlor	ND		0.0010	1		02/07/2025 00:00		
Toxaphene	ND		0.20	1		02/07/2025 00:00		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Decachlorobiphenyl	96		60-130			02/07/2025 00:00		
Analyst(s): CN								

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081BProject:2024-12-14; Madera Drive PropertyUnit:mg/kg

Organochlorine Pesticides Client ID Lab ID Matrix **Date Collected** Instrument **Batch ID** RW-1@2' 2501D62-025A 01/23/2025 08:22 GC20 02062555.D 310633 Soil **Analytes** Result Qualifiers RL DF **Date Analyzed** ND 0.0010 02/07/2025 02:00 Aldrin 1 a-BHC ND 0.0010 1 02/07/2025 02:00 b-BHC ND 0.0010 02/07/2025 02:00 1 d-BHC ND 0.0010 1 02/07/2025 02:00 g-BHC ND 0.0010 02/07/2025 02:00 Chlordane (Technical) 0.13 0.025 1 02/07/2025 02:00 a-Chlordane 0.013 0.0010 1 02/07/2025 02:00 Р g-Chlordane 0.011 0.0010 1 02/07/2025 02:00 0.0076 p,p-DDD 0.0010 1 02/07/2025 02:00 p,p-DDE 0.062 0.0010 1 02/07/2025 02:00 p,p-DDT 0.0010 0.047 1 02/07/2025 02:00 Dieldrin 0.0043 0.0010 02/07/2025 02:00 Endosulfan I ND 0.0010 1 02/07/2025 02:00 ND Endosulfan II 0.0010 02/07/2025 02:00 Endosulfan sulfate ND 0.0010 1 02/07/2025 02:00 Endrin ND 0.0010 1 02/07/2025 02:00 Endrin aldehyde 0.0039 0.0010 1 02/07/2025 02:00 Endrin ketone ND 0.0010 1 02/07/2025 02:00 ND Heptachlor 0.0010 1 02/07/2025 02:00 Heptachlor epoxide ND 0.0010 1 02/07/2025 02:00 ND 0.010 1 02/07/2025 02:00 Hexachlorobenzene Hexachlorocyclopentadiene ND 0.020 1 02/07/2025 02:00 ND 0.0010 1 02/07/2025 02:00 Methoxychlor Toxaphene ND 0.20 02/07/2025 02:00 Surrogates **REC (%) Limits** Decachlorobiphenyl 96 60-130 02/07/2025 02:00 Analyst(s): CN

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Project: 2024-12-14; Madera Drive Property Unit: mg/kg

Organochlorine Pesticides								
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID		
RW-2@6"	2501D62-026A	Soil	01/23/2025	08:14	GC20 02062556.D	310633		
Analytes	Result	Qualifiers	<u>RL</u>	<u>DF</u>		Date Analyzed		
Aldrin	ND		0.0020	2		02/07/2025 02:16		
a-BHC	ND		0.0020	2		02/07/2025 02:16		
b-BHC	ND		0.0020	2		02/07/2025 02:16		
d-BHC	ND		0.0020	2		02/07/2025 02:16		
g-BHC	ND		0.0020	2		02/07/2025 02:16		
Chlordane (Technical)	0.73		0.050	2		02/07/2025 02:16		
a-Chlordane	0.068		0.0020	2		02/07/2025 02:16		
g-Chlordane	0.069		0.0020	2		02/07/2025 02:16		
p,p-DDD	0.075		0.0020	2		02/07/2025 02:16		
p,p-DDE	0.86		0.010	10		02/07/2025 16:06		
p,p-DDT	0.50		0.010	10		02/07/2025 16:06		
Dieldrin	ND		0.0020	2		02/07/2025 02:16		
Endosulfan I	0.029	Р	0.0020	2		02/07/2025 02:16		
Endosulfan II	ND		0.0020	2		02/07/2025 02:16		
Endosulfan sulfate	ND		0.0020	2		02/07/2025 02:16		
Endrin	ND		0.0020	2		02/07/2025 02:16		
Endrin aldehyde	ND		0.0020	2		02/07/2025 02:16		
Endrin ketone	ND		0.0020	2		02/07/2025 02:16		
Heptachlor	ND		0.0020	2		02/07/2025 02:16		
Heptachlor epoxide	0.0052	Р	0.0020	2		02/07/2025 02:16		
Hexachlorobenzene	ND		0.020	2		02/07/2025 02:16		
Hexachlorocyclopentadiene	ND		0.040	2		02/07/2025 02:16		
Methoxychlor	ND		0.0020	2		02/07/2025 02:16		
Toxaphene	ND		0.40	2		02/07/2025 02:16		
Surrogates	REC (%)		<u>Limits</u>					
Decachlorobiphenyl	115		60-130			02/07/2025 02:16		
Analyst(s): CN			Analytical Com	ments: a2	2,a3			

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081BProject:2024-12-14; Madera Drive PropertyUnit:mg/kg

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** RW-2@2' 2501D62-027A 01/23/2025 08:34 GC20 02062557.D 310633 Soil **Analytes** Result RL DF **Date Analyzed** ND 0.0050 5 02/07/2025 02:31 Aldrin a-BHC 5 ND 0.0050 02/07/2025 02:31 b-BHC ND 5 02/07/2025 02:31 0.0050 d-BHC ND 0.0050 5 02/07/2025 02:31 g-BHC ND 0.0050 02/07/2025 02:31 ND Chlordane (Technical) 0.12 5 02/07/2025 02:31 a-Chlordane 0.010 0.0050 5 02/07/2025 02:31 g-Chlordane 0.0076 0.0050 5 02/07/2025 02:31 p,p-DDD 0.019 0.0050 5 02/07/2025 02:31 p,p-DDE 0.24 0.0050 5 02/07/2025 02:31 p,p-DDT 0.0050 0.17 5 02/07/2025 02:31 Dieldrin ND 0.0050 5 02/07/2025 02:31 ND Endosulfan I 0.0050 5 02/07/2025 02:31 Endosulfan II ND 0.0050 5 02/07/2025 02:31 Endosulfan sulfate ND 0.0050 5 02/07/2025 02:31 Endrin ND 0.0050 5 02/07/2025 02:31 Endrin aldehyde ND 0.0050 5 02/07/2025 02:31 Endrin ketone ND 0.0050 5 02/07/2025 02:31 ND Heptachlor 0.0050 5 02/07/2025 02:31 Heptachlor epoxide ND 0.0050 5 02/07/2025 02:31 ND 0.050 5 02/07/2025 02:31 Hexachlorobenzene Hexachlorocyclopentadiene ND 0.10 5 02/07/2025 02:31 ND 0.0050 5 02/07/2025 02:31 Methoxychlor Toxaphene ND 1.0 5 02/07/2025 02:31 Surrogates **REC (%) Limits** Decachlorobiphenyl 111 60-130 02/07/2025 02:31

Analytical Comments: a3

Analyst(s): CN

2024-12-14; Madera Drive Property

Project:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Unit:

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3550BDate Prepared:02/03/2025Analytical Method:SW8081B

Organochlorine Pesticides Client ID Lab ID Matrix **Date Collected** Instrument **Batch ID** RW-2@6"(dup) 2501D62-028A 01/23/2025 08:41 GC20 02062558.D 310633 Soil Qualifiers **Analytes** Result RL DF **Date Analyzed** ND 0.0050 5 02/07/2025 02:46 Aldrin a-BHC 5 ND 0.0050 02/07/2025 02:46 b-BHC 0.0050 ND 5 02/07/2025 02:46 d-BHC ND 0.0050 5 02/07/2025 02:46 g-BHC ND 0.0050 02/07/2025 02:46 Chlordane (Technical) 0.46 0.12 5 02/07/2025 02:46 a-Chlordane 0.030 0.0050 5 02/07/2025 02:46 g-Chlordane 0.032 0.0050 5 02/07/2025 02:46 p,p-DDD 0.12 0.0050 5 02/07/2025 02:46 p,p-DDE 2.0 0.020 20 02/07/2025 16:21 p,p-DDT 0.020 20 2.6 02/07/2025 16:21 Dieldrin ND 0.0050 5 02/07/2025 02:46 Ρ Endosulfan I 0.019 0.0050 5 02/07/2025 02:46 Endosulfan II ND 0.0050 5 02/07/2025 02:46 Endosulfan sulfate 0.024 0.0050 5 02/07/2025 02:46 Endrin ND 0.0050 5 02/07/2025 02:46 Endrin aldehyde ND 0.0050 5 02/07/2025 02:46 Endrin ketone ND 0.0050 5 02/07/2025 02:46 ND Heptachlor 0.0050 5 02/07/2025 02:46 Heptachlor epoxide ND 0.0050 5 02/07/2025 02:46 ND 0.050 5 02/07/2025 02:46 Hexachlorobenzene Hexachlorocyclopentadiene ND 0.10 5 02/07/2025 02:46 ND 0.0050 5 02/07/2025 02:46 Methoxychlor Toxaphene ND 1.0 5 02/07/2025 02:46 Surrogates **REC (%) Limits** Decachlorobiphenyl 83 60-130 02/07/2025 02:46 Analytical Comments: a2,a3 Analyst(s): CN

Analytical Report

 Client:
 Enviro Asssessment PC

 Date Received:
 01/23/2025 17:03

 Date Prepared:
 02/04/2025-02/06/2025

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals **Client ID** Lab ID Matrix **Date Collected Batch ID** Instrument RN-1@2' 2501D62-012A Soil 01/23/2025 08:56 ICP-MS4 120SMPL.d 310628 Result <u>RL</u> DF **Date Analyzed Analytes** 0.50 Lead 9.3 1 02/04/2025 16:04 Surrogates **REC (%)** Limits Terbium 97 70-130 02/04/2025 16:04 Analyst(s): AL

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
RN-2@6"	2501D62-013A	Soil	01/23/202	5 08:17	ICP-MS5 116SMPL.d	310749
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	34		0.50	1		02/06/2025 12:00
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	88		70-130)		02/06/2025 12:00
Analyst(s): AI						

Client ID	Lab ID	Matrix	Date Collected		ected	Instrument	Batch ID
RN-2@2'	2501D62-014A	Soil	01/23	/2025	09:09	ICP-MS4 247SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>		<u>DF</u>		Date Analyzed
Lead	8.5		0.5	0	1		02/06/2025 16:37
Surrogates	<u>REC (%)</u>		<u>Lim</u>	nits			
Terbium	95		70	-130			02/06/2025 16:37
Analyst(s): AL							

Analytical Report

 Client:
 Enviro Asssessment PC

 Date Received:
 01/23/2025 17:03

 Date Prepared:
 02/04/2025-02/06/2025

Project: 2024-12-14; Madera Drive Property

Metals								
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID		
RS-1@2'	2501D62-016A	Soil	01/23/202	5 09:55	ICP-MS4 251SMPL.d	310863		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Lead	19		0.50	1		02/06/2025 16:54		
<u>Surrogates</u>	REC (%)		<u>Limits</u>					
Terbium	90		70-130			02/06/2025 16:54		
Analyst(s): AL								

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
RS-2@6"	2501D62-017A	Soil	01/23/202	5 09:20	ICP-MS4 252SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	29		0.50	1		02/06/2025 16:58
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	96		70-130			02/06/2025 16:58
Analyst(s): Al						

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
RS-2@2'	2501D62-018A	Soil	01/23/202	25 09:50	ICP-MS4 255SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	21		0.50	1		02/06/2025 17:10
Surrogates	REC (%)		<u>Limits</u>			
Terbium	96		70-130)		02/06/2025 17:10
Analyst(s): DB						

Analytical Report

 Client:
 Enviro Asssessment PC

 Date Received:
 01/23/2025 17:03

 Date Prepared:
 02/04/2025-02/06/2025

Project:

2024-12-14; Madera Drive Property

WorkOrder: 2501D62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals **Client ID** Lab ID Matrix **Date Collected Batch ID** Instrument RE-1@2' 2501D62-021A Soil 01/23/2025 08:45 ICP-MS4 256SMPL.d 310863 Result <u>RL</u> DF **Date Analyzed Analytes** 0.50 Lead 12 1 02/06/2025 17:14 Surrogates **REC (%)** Limits Terbium 97 70-130 02/06/2025 17:14 Analyst(s): DB

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
RE-2@6"	2501D62-022A	Soil	01/23/202	5 08:40	ICP-MS4 257SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	40		0.50	1		02/06/2025 17:18
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	103		70-130			02/06/2025 17:18
Analyst(s): DB						

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
RE-2@2'	2501D62-023A	Soil	01/23/2025	08:50	ICP-MS4 258SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	9.0		0.50	1		02/06/2025 17:22
Surrogates	REC (%)		<u>Limits</u>			
Terbium	96		70-130			02/06/2025 17:22
Analyst(s): DB						

Analytical Report

 Client:
 Enviro Asssessment PC

 Date Received:
 01/23/2025 17:03

 Date Prepared:
 02/04/2025-02/06/2025

Project: 2024-12-14; Madera Drive Property

Metals								
Client ID	Lab ID	Matrix	rix Date Collected		Instrument	Batch ID		
RW-1@2'	2501D62-025A	A Soil	01/23/2025	08:22	ICP-MS4 259SMPL.d	310863		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Lead	10		0.50	1		02/06/2025 17:26		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Terbium	92		70-130			02/06/2025 17:26		
Analyst(s): DB								

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
RW-2@6"	2501D62-026A	Soil	01/23/202	5 08:14	ICP-MS4 260SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	34		0.50	1		02/06/2025 17:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	97		70-130			02/06/2025 17:30
Analyst(s): DB						

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
RW-2@2'	2501D62-027A	Soil	01/23/20	25 08:34	ICP-MS4 261SMPL.d	310863
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Lead	23		0.50	1		02/06/2025 17:34
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	89		70-13	30		02/06/2025 17:34
Analyst(s): DB						

Analytical Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Received:01/23/2025 17:03Extraction Method:SW3050BDate Prepared:02/04/2025-02/06/2025Analytical Method:SW6020Project:2024-12-14; Madera Drive PropertyUnit:mg/kg

Metals										
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID				
RW-2@6"(dup)	6"(dup) 2501D62-028A S		01/23/2025	08:41	ICP-MS4 262SMPL.d	310863				
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed				
Lead	29		0.50	1		02/06/2025 17:38				
Surrogates	<u>REC (%)</u>		<u>Limits</u>							
Terbium	102		70-130			02/06/2025 17:38				
Analyst(s): DB										

0.05

89

Quality Control Report

 Client:
 Enviro Asssessment PC
 WorkOrder:
 2501D62

 Date Prepared:
 02/03/2025
 BatchID:
 310633

 Date Analyzed:
 02/06/2025
 Extraction Method:
 SW3550B

Instrument: GC20
Analytical Method: SW8081B
Matrix: Soil
Unit: mg/kg

0.045

Project: 2024-12-14; Madera Drive Property **Sample ID:** MB/LCS/LCSD-310633

Analyte	MB Result	MDL	RL	SPK Val	MB IS/SS %REC	MB IS/SS Limits
Aldrin	ND	0.00042	0.0010	-	-	-
a-BHC	ND	0.00045	0.0010	-	-	-
b-BHC	ND	0.00038	0.0010	-	-	-
d-BHC	ND	0.00036	0.0010	-	-	-
g-BHC	ND	0.00036	0.0010	-	-	-
Chlordane (Technical)	ND	0.010	0.025	-	-	-
a-Chlordane	ND	0.00035	0.0010	-	-	-
g-Chlordane	ND	0.00067	0.0010	-	-	-
p,p-DDD	ND	0.00057	0.0010	-	-	-
p,p-DDE	ND	0.00034	0.0010	-	-	-
p,p-DDT	ND	0.00043	0.0010	-	-	-
Dieldrin	ND	0.00041	0.0010	-	-	-
Endosulfan I	ND	0.00040	0.0010	-	-	-
Endosulfan II	ND	0.00051	0.0010	-	-	-
Endosulfan sulfate	ND	0.00040	0.0010	-	-	-
Endrin	ND	0.00045	0.0010	-	-	-
Endrin aldehyde	ND	0.00045	0.0010	-	-	-
Endrin ketone	ND	0.00042	0.0010	-	-	-
Heptachlor	ND	0.00067	0.0010	-	-	-
Heptachlor epoxide	ND	0.00041	0.0010	-	-	-
Hexachlorobenzene	ND	0.00038	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.00064	0.020	-	-	-
Methoxychlor	ND	0.00063	0.0010	-	-	-
Toxaphene	ND	0.064	0.20	-	-	-

Decachlorobiphenyl

70-130

Quality Control Report

 Client:
 Enviro Asssessment PC
 WorkOrder:
 2501D62

 Date Prepared:
 02/03/2025
 BatchID:
 310633

 Date Analyzed:
 02/06/2025
 Extraction Method:
 SW3550B

 Instrument:
 GC20
 Analytical Method:
 SW8081B

 Matrix:
 Soil
 Unit:
 mg/kg

0.052

0.048

0.050

103

96

70-130

7.78

20

Project: 2024-12-14; Madera Drive Property **Sample ID:** MB/LCS/LCSD-310633

QC Summary Report for SW8081B RPD Analyte LCS **LCSD SPK LCS LCSD** LCS/LCSD RPD Result Result Val %REC %REC Limits Limit 0.054 0.054 107 70-130 1.38 20 Aldrin 0.050 109 2.74 a-BHC 0.052 0.053 0.050 104 107 70-130 20 b-BHC 0.049 0.050 0.050 98 99 70-130 1.12 20 d-BHC 0.052 0.053 0.050 105 106 70-130 1.29 20 g-BHC 0.054 0.054 0.050 108 109 70-130 1.29 20 a-Chlordane 0.053 0.054 0.050 107 108 70-130 1.05 20 g-Chlordane 0.054 0.055 108 70-130 1.27 20 0.050 109 p,p-DDD 0.052 0.052 0.050 104 105 70-130 0.288 20 p,p-DDE 0.056 0.056 0.050 112 112 70-130 0.184 20 p,p-DDT 0.053 0.052 0.050 107 104 70-130 2.61 20 107 20 Dieldrin 0.053 0.054 0.050 106 70-130 0.671 Endosulfan I 0.052 0.052 0.050 104 105 70-130 0.293 20 104 0.222 20 Endosulfan II 0.052 0.052 0.050 104 70-130 0.052 105 70-130 0.764 20 Endosulfan sulfate 0.053 0.050 104 115 70-130 20 Endrin 0.058 0.057 0.050 114 1.18 104 70-130 0.0316 20 Endrin aldehyde 0.052 0.052 0.050 104 Endrin ketone 0.054 0.053 0.050 107 105 70-130 1.52 20 20 0.059 0.060 0.050 119 70-130 1.03 Heptachlor 118 Heptachlor epoxide 0.053 0.054 0.050 106 107 70-130 1.21 20 0.048 0.049 0.050 96 70-130 1.40 20 Hexachlorobenzene 98 0.051 101 50-130 20 Hexachlorocyclopentadiene 0.052 0.050 104 2.45 Methoxychlor 0.052 0.051 0.050 105 102 70-130 3.12 20 **Surrogate Recovery**

Decachlorobiphenyl

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared:02/04/2025Date Analyzed:02/04/2025Instrument:ICP-MS4Matrix:Soil

Project: 2024-12-14; Madera Drive Property

WorkOrder: 2501D62 **BatchID:** 310628

Extraction Method: SW3050B **Analytical Method:** SW6020

Unit: mg/kg

Sample ID: MB/LCS/LCSD-310628

2501D62-012AMS/MSD

	QC Summary Report for Metals											
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC		3 IS/SS nits		
Lead		ND		0.11	0.50		-	-	-			
Surrogate Recovery												
Terbium		520					500	104	7	'0-130		
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Lead		48	50	50		97	99	75-125	2.64	20		
Surrogate Recovery												
Terbium		510	530	500		102	106	70-130	3.73	20		
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit		
Lead	1	64	58	50	9.333	109	98	75-125	9.23	20		
Surrogate Recovery												
Terbium	1	520	510	500		104	102	70-130	2.20	20		
Analyte		DLT Result			DLTRef Val				%D	%D Limit		
Lead		9.3			9.3				0.782	-		

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client:Enviro Asssessment PCWorkOrder:2501D62Date Prepared:02/05/2025BatchID:310749Date Analyzed:02/05/2025Extraction Method:SW3050BInstrument:ICP-MS6Analytical Method:SW6020

Matrix: Soil Unit: mg/kg

Project: 2024-12-14; Madera Drive Property **Sample ID:** MB/LCS/LCSD-310749

	QC Sur	QC Summary Report for Metals									
Analyte	MB Result		MDL	RL		SPK Val	MB IS/SS %REC		B IS/SS mits		
Lead	ND		0.11	0.50		-	-	-			
Surrogate Recovery											
Terbium	490					500	98	7	70-130		
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Lead	51	51	50		102	101	75-125	1.02	20		
Surrogate Recovery											
Terbium	500	490	500		100	99	70-130	1.15	20		

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/06/2025 **Date Analyzed:** 02/06/2025 **Instrument:** ICP-MS4 **Matrix:** Soil

Project: 2024-12-14; Madera Drive Property WorkOrder: 2501D62 **BatchID:** 310863

Extraction Method: SW3050B Analytical Method: SW6020 Unit:

Sample ID: MB/LCS/LCSD-310863

mg/kg

2501D62-014AMS/MSD

	QC Summary Report for Metals											
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC	MB Lim	IS/SS its		
Lead		ND		0.11	0.50		-	-	-			
Surrogate Recovery												
Terbium		510					500	101	70)-130		
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Lead		49	49	50		99	99	75-125	0.0628	20		
Surrogate Recovery												
Terbium		490	480	500		97	96	70-130	1.26	20		
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit		
Lead	1	55	58	50	8.484	92	99	75-125	5.38	20		
Surrogate Recovery												
Terbium	1	460	480	500		92	95	70-130	2.93	20		
Analyte		DLT Result			DLTRef Val				%D	%D Limit		
Lead		8.7			8.5				2.02	-		

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page	l (of	1
------	-----	----	---

□ J-flag

□ ThirdParty

WorkOrder: 2501D62 A ClientCode: EAVS □ EDF □WaterTrax CLIP

EQuIS Dry-Weight □Email ☐ HardCopy Detection Summary □ Excel

Bill to: Report to:

James Robinson Email: james@enviroassess.com cc/3rd Party: service@enviroassessment.com; Enviro Asssessment PC 1869 E Seltice Way #570

PO:

Project: Post Falls, ID 83854 2024-12-14; Madera Drive Property

877-629-6838 FAX: 877-623-5493

Requested TAT: 5 days; James Robinson

Enviro Assess

01/23/2025 Date Received: 1869 E Seltice Way #570 Date Logged: 01/23/2025 Post Falls, ID 83854 james@enviroassess.com; fabiola@env Date Add-On: 02/03/2025

					Requested Tests (See legend below)											
Lab ID	Lab ID ClientSampID		Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
													,		,	
2501D62-012	RN-1@2'	Soil	1/23/2025 08:56		Α	Α	Α									
2501D62-013	RN-2@6"	Soil	1/23/2025 08:17		Α	Α	Α									
2501D62-014	RN-2@2'	Soil	1/23/2025 09:09		Α	Α	Α									
2501D62-016	RS-1@2'	Soil	1/23/2025 09:55		Α	Α	Α									
2501D62-017	RS-2@6"	Soil	1/23/2025 09:20		Α	Α	Α									
2501D62-018	RS-2@2'	Soil	1/23/2025 09:50		Α	Α	Α									
2501D62-021	RE-1@2'	Soil	1/23/2025 08:45		Α	Α	Α									
2501D62-022	RE-2@6"	Soil	1/23/2025 08:40		Α	Α	Α									
2501D62-023	RE-2@2'	Soil	1/23/2025 08:50		Α	Α	Α									
2501D62-025	RW-1@2'	Soil	1/23/2025 08:22		Α	Α	Α									
2501D62-026	RW-2@6"	Soil	1/23/2025 08:14		Α	Α	Α									
2501D62-027	RW-2@2'	Soil	1/23/2025 08:34		Α	Α	Α									
2501D62-028	RW-2@6"(dup)	Soil	1/23/2025 08:41		Α	Α	Α									

Test Legend:

1 8081_S	2 METALSMS_TTLC_S	3 PRHOLD Credit	4
5	6	7	8
9	10	11	12

Prepared by: Emily Perez

Add-On Prepared By: Maria Venegas

Comments: samples off HOLD 2/3/25 STAT.

> NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-14; Madera Drive Property Work Order: 2501D62

Client Contact: James Robinson

QC Level: LEVEL 2

Contact's Email james@enviroassess.com

Comments: samples off HOLD 2/3/25 STAT.

Date Logged: 1/23/2025

Date Add-On: 2/3/2025

LabID	ClientSampID	Matrix	Test Name	Cont. /Comp	Bottle & U** Preservative	 Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
012A	RN-1@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 8:56	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
013A	RN-2@6"	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 8:17	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
014A	RN-2@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 9:09	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
016A	RS-1@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 9:55	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
017A	RS-2@6"	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 9:20	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
018A	RS-2@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 9:50	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		
021A	RE-1@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Small		1/23/2025 8:45	5 days	2/10/2025		
			SW8081B (OC Pesticides)					5 days	2/10/2025		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 2

Client Contact: James Robinson

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-14; Madera Drive Property Work Order: 2501D62

QC Level: LEVEL 2

Contact's Email james@enviroassess.com

Comments: samples off HOLD 2/3/25 STAT.

Date Logged: 1/23/2025

Date Add-On: 2/3/2025

LabID	ClientSampID	Matrix	Test Name	Cont. /Comp	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out	
022A	RE-2@6"	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all 🗌		1/23/2025 8:40	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				
023A	RE-2@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all 🗌		1/23/2025 8:50	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				
025A	RW-1@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all 🗌		1/23/2025 8:22	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				
026A	RW-2@6"	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all 🗌		1/23/2025 8:14	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				
027A	RW-2@2'	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all 🗌		1/23/2025 8:34	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				
028A	RW-2@6"(dup)	Soil	SW6020 (Metals) <lead></lead>	1	Plastic Baggie, Sm	all		1/23/2025 8:41	5 days	2/10/2025				
			SW8081B (OC Pesticides)						5 days	2/10/2025				

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 2 of 2

	_ McCAMP	BELL	ANAI	LY	FICAL	, INC.						CH	AIN	OF C	USTO	ODY	REC	COR	D					
	1534 W	Villow Pass	Rd. Pittsbur	g, Ca.	94565-1701		Tum	Aroun	d Time	:1 Day	Rush	2	Day Ru	sh	3 Day	Rush		STD	•	Que	te#			
1	Telepho	one: (877) 2	52-9262 / Fa	ax: (92	5) 252-9269		J-Flag	/ MDL	I	ESL		C	eanup A	Approved		Dry V	Veight		Bott	le Ord	er#			
	www.mccampb	ell.com	ma	in@n	nccampbell.	com	Deliv	сгу Го	rmat;	PDF		GeoTr	icker El	OF	EDD		Wr	ite On	(DW)	T	Dete	et Sun	mary	
	Report To: James Robinson		Bill To:	Jame	s Robinson	MITTER STATE AND ADDRESS OF THE STATE ADDRESS					-			Analys	is Re	quest	ed							
	Company: Enviro Assessment, PC									Y														
	Email: james@enviroassessment.com (N	New Email)								V														
	Alt Email: Service@enviroassessment.co	m	Tele:		844-742-7	311				ES			- 1											
-	Project Name: Madera Drive Property		Project #:		2024-12-0	014				P														
- 1-	Project Name: Madera Drive Property Project #: 2024-12-014 Project Location: Cuperlino, CA PO # Sampler Signature: Skeel Arve																							
1																								
	SAMPLE ID	Sam	pling	nincrs			Ps	eni	o	9														
	Location / Field Point	Date	Time	#Containers	Matrix	Preservative	OCP	Arsenic	Lead	HOLD														
1	RN-1@6"	1/23/25	6904	1	Soil	ice	0		0															
1	RN-1@2'	1/23/25	0\$56	1	Soil	ice	X		X	•														
	RN-2@6"	1/23/25	6917	1	Soil	ice	X		X	0									11					
1	RN-2@2'	1/23/25	6909	1	Soil	ice	X		X	•														
	RS-1@6"	1/23/25	0915	1	Soil	ice	•		•															
	RS-1@2'	1/23/21	0955	1	Soil	ice	X		X	0														
	RS-2@6"	16/23/21	0920	1	Soil	ice	X		X	0														
	RS-2@2'	1/23/25	0950	1	Soil	ice	X		X	0														
	RN-1@6" (dup)	1/23/25	0858	1	Soil	ice	0		•															
			4			*7.																		-
	MAI clients MUST disclose any dangerous chemical Non-disclosure incurs an immediate \$250 surcharge														ent as a	result o	of brief,	gloved	open :	ir, sam	ole han	dling b	MAI	staff.
L	* If metals are requested for water samples and			_							17 M T IN 12								C	ommen	ts / Ins	structio	ns	
	Please provide an adequate volume of sample. I	If the volume	is not sufficie	nt for a	MS/MSD a L	CS/LCSD will	be pr	epared	in its	olace a	nd not	ed in the	report.					NO	ES	L				
1	Relinquished By / Company			-	100	ime		Rece	iyed B	y / Cor	ppany	Name	/		ate	_	ime	*	50	ME	100	- 0	a	
-	Slew Ashe/Enviro Assessu	our pc		1/2	3/25 /7	23	_	1	11	K,	_	16		1/2	3/25	12	103	1		4-14	1	1	u	
1						_				_				-		-		H	04) ;	2/3	170	-	
L	Matrix Code: DW=Drinking Water, G	W=Group	d Water W	/W=V	Jacta Water	SW=Sanu	ater	S=S-	il CI	-01	daa	Λ=Δir	W/P=1	Wine C	=Oth	l or		-			1	6		
	Preservative Code: 1=4°C 2=HCl									oiu	uge,	Α-ΛΙΙ,	***	ripe, C	-Oui		Гетр			°C	Init	tials	7	

Page 2 of 3

																						,	-	
McCAMP	BELL	ANA	LYT	FICAL	, INC.						C	HAI.	N OF	CU	STC	DY	REC	COR	D					
1534 V	Villow Pass I	Rd. Pittsbur	g, Ca.	94565-1701		Turn 2	Aroun	d Time	:1 Day	Rush		2 Day	Rush		3 Day	Rush		STD	•	Qu	ote#			
Teleph	one: (877) 2:	52-9262 / Fa	ax: (92	5) 252-9269		J-Flag	/ MDL		ESL				p Appr	oved		Dry W	eight		Bott	le Or				
www.mccample	oell.com	ma	nin@n	nccampbell.	com	Delive	ery Fo	rmat:	PDF		GeoT	racker	EDF		EDD		Wr	ite On	(DW)		Dete	ect Sun	nmary	
Report To: James Robinson		Bill To:	James	Robinson				,					An	alysi	s Rec	quest	ed					r		
Company: Enviro Assessment, PC									*															
Email: james@enviroassessment.com (I	New Email)																							1
Alt Email: Service@enviroassessment.co	om	Tele:		844-742-7	311				ES															
Project Name: Madera Drive Property		Project #:		2024-12-0	014				SAMPL											1				
Project Location: Cupertino, CA		PO#							\geq											1				
Sampler Signature: Stack Ashe	- 200						O		1000000															
SAMPLE ID	Sam	pling	iners			Ps	eni	P	OLD															
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	OCP	Arsenic	Lead	오															
RE-1@6"	1/23/25	6756 B	505	Soil	ice	•		0														- 7		
RE-1@2'	1/23/25	0345	1	Soil	ice	X		X	0															
RE-2@6"	1/23/25	C8140	249	Soil	ice	X		X	0															
RE-2@2'	1/23/25	0850	1	Soil	ice	X		X	0															
RW-1@6"	1/23/25	0756	1	Soil	ice	•		•																
RW-1@2'	1/23/25	0922	1	Soil	ice	X		X	•															
RW-2@6"	1/23/25	0914	1	Soil	ice	X		X	0															
RW-2@2'	1/23/25	6934	1	Soil	ice	X		X	0															
RW-2@6" (dup)	1/23/25	0841	1	Soil	ice	X		X	0															
MAI clients MUST disclose any dangerous chemica Non-disclosure incurs an immediate \$250 surcharge															nt as a	result o	of brief,	glove	i, open	air, san	nple har	ndling t	y MAI	staff.
* If metals are requested for water samples and									-				WOLK SQI					Г		omme	nts / In	structi	ons	
Please provide an adequate volume of sample.								_					rt.					NC) ES					
Relinquished By / Compar		is not suffici			ime	l be piv	-		-	npany	-	Стера		D	ate	Ti	me	INC)L				
SEUCH Ashe/ ENVIR ASSESSE			1/23	125 /7	03 7	/		1/	1) al				1/23	125	17	203	1						
					1	-		7	700		7							1						
Matrix Code: DW=Drinking Water, O	GW=Groun	d Water, V	VW=V	Vaste Water	, SW=Seaw	ater,	S=Sc	oil, SI	=Slu	dge,	A=Air	r, WP	=Wip	e, O	=Oth									
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	$4=HNO_3$	5=N:	aOH 6=Zi	nOAc/NaOl	H 7	=Non	ie								7	Гетр			°C	Ini	tials		

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2502818

Report Created for: Enviro Asssessment PC

1869 E Seltice Way #570

Post Falls, ID 83854

Project Contact: James Robinson

Project P.O.:

Project: 2024-12-014; Madera Drive Property

Project Location: Cupertino, CA

Project Received: 02/12/2025

Analytical Report reviewed & approved for release on 02/20/2025 by:

Un Cao

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2502818

Project: 2024-12-014; Madera Drive Property

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2502818

Project: 2024-12-014; Madera Drive Property

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

P Agreement between the quantitative dual-column confirmation results exceed method recommended limits of

40% RPD. The lowest concentration is reported.

a3 Sample diluted due to high organic content interfering with quantitative/or qualitative analysis.

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria.

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/12/2025

Project: 2024-12-014; Madera Drive Property

Analytes Result Qualifiers RL DE Date Analyzed Aldrin ND 0.0010 1 02/13/2025 06:37 a-BHC ND 0.0010 1 02/13/2025 06:37 a-BHC ND 0.0010 1 02/13/2025 06:37 b-BHC ND 0.0010 1 02/13/2025 06:37 b-BHC ND 0.0010 1 02/13/2025 06:37 b-BHC ND 0.0010 1 02/13/2025 06:37 g-BHC ND 0.0010 1 02/13/2025 06:37 g-BHC ND 0.0010 1 02/13/2025 06:37 a-Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0019 P 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endosulfan letone ND 0.0010 1 02/13/2	Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
Aldrin ND 0.0010 1 02/13/2025 06:37 a-BHC ND 0.0010 1 02/13/2025 06:37 b-BHC ND 0.0010 1 02/13/2025 06:37 d-BHC ND 0.0010 1 02/13/2025 06:37 d-BHC ND 0.0010 1 02/13/2025 06:37 c-BHC ND 0.0010 1 02/13/2025 06:37 c-BHC ND 0.0010 1 02/13/2025 06:37 c-BHC ND 0.0010 1 02/13/2025 06:37 a-Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 a-Chlordane (Technical) ND 0.0010 1 02/13/2025 06:37 a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 b-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 b-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 b-DDD 0.0018 0.0010 1 02/13/2025 06:37 b-DDD 0.0010 1 02/13/2025 06:37 b-DDT 0.0018 0.0010 1 02/13/2025 06:37 b-DDT 0.0018 0.0010 1 02/13/2025 06:37 b-DDT 0.0018 0.0010 1 02/13/2025 06:37 b-DDT 0.0010	TP-1 @ 3'	2502818-001	A Soil	02/12/2025	09:19	GC40 02122593.d	311286
a-BHC ND 0.0010 1 02/13/2025 06:37 b-BHC ND 0.0010	<u>Analytes</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
b-BHC ND 0.0010 1 02/13/2025 06:37 d-BHC ND 0.0010 1 02/13/2025 06:37 g-BHC ND 0.0010 1 02/13/2025 06:37 Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 p,p-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p,p-DDT 0.064 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endrin ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 </td <td>Aldrin</td> <td>ND</td> <td></td> <td>0.0010</td> <td>1</td> <td></td> <td>02/13/2025 06:37</td>	Aldrin	ND		0.0010	1		02/13/2025 06:37
d-BHC ND 0.0010 1 02/13/2025 06:37 g-BHC ND 0.0010 1 02/13/2025 06:37 Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0019 P 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDT 0.064 0.0010 1 02/13/2025 06:37 p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Endosulfan ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010	a-BHC	ND		0.0010	1		02/13/2025 06:37
g-BHC ND 0.0010 1 02/13/2025 06:37 Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 p,-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p,-DDT 0.064 0.0010 1 02/13/2025 06:37 p,-DDT 0.018 0.0010 1 02/13/2025 06:37 Endosulfan ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endosulfan Sulfate ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1	b-BHC	ND		0.0010	1		02/13/2025 06:37
Chlordane (Technical) ND 0.025 1 02/13/2025 06:37 a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endrin ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.0010	d-BHC	ND		0.0010	1		02/13/2025 06:37
a-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 p,p-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p,p-DDE 0.064 0.0010 1 02/13/2025 06:37 p,p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endrin Albertone ND 0.0010 1 02/13/2025 06:37 Endrin Albertone ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37	g-BHC	ND		0.0010	1		02/13/2025 06:37
g-Chlordane 0.0010 0.0010 1 02/13/2025 06:37 p.p-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDE 0.064 0.0010 1 02/13/2025 06:37 p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan III ND 0.0010 1 02/13/2025 06:37 Endrin sulfate ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Methoxychlor ND 0.020 1 02/1	Chlordane (Technical)	ND		0.025	1		02/13/2025 06:37
p-P-DDD 0.0019 P 0.0010 1 02/13/2025 06:37 p.p-DDE 0.064 0.0010 1 02/13/2025 06:37 p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endrin ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.010 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.0010 1 02/13	a-Chlordane	0.0010		0.0010	1		02/13/2025 06:37
P,P-DDE	g-Chlordane	0.0010		0.0010	1		02/13/2025 06:37
p.p-DDT 0.018 0.0010 1 02/13/2025 06:37 Dieldrin ND 0.0010 1 02/13/2025 06:37 Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endrin sulfate ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.0010 1 02/13/2025 06:37 Surrogates REC (%) Limits	p,p-DDD	0.0019	Р	0.0010	1		02/13/2025 06:37
ND 0.0010 1 02/13/2025 06:37	p,p-DDE	0.064		0.0010	1		02/13/2025 06:37
Endosulfan I ND 0.0010 1 02/13/2025 06:37 Endosulfan II ND 0.0010 1 02/13/2025 06:37 Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endrin ND 0.0010 1 02/13/2025 06:37 Endrin Aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.0010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.0010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.0010 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Surrogates REC (%) Limits	p,p-DDT	0.018		0.0010	1		02/13/2025 06:37
Endosulfan II	Dieldrin	ND		0.0010	1		02/13/2025 06:37
Endosulfan sulfate ND 0.0010 1 02/13/2025 06:37 Endrin ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37	Endosulfan I	ND		0.0010	1		02/13/2025 06:37
Endrin ND 0.0010 1 02/13/2025 06:37 Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.0010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.010 1 02/13/2025 06:37 Methoxychlor ND 0.020 1 02/13/2025 06:37 Toxaphene ND 0.0010 1 02/13/2025 06:37	Endosulfan II	ND		0.0010	1		02/13/2025 06:37
Endrin aldehyde ND 0.0010 1 02/13/2025 06:37 Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Endosulfan sulfate	ND		0.0010	1		02/13/2025 06:37
Endrin ketone ND 0.0010 1 02/13/2025 06:37 Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Endrin	ND		0.0010	1		02/13/2025 06:37
Heptachlor ND 0.0010 1 02/13/2025 06:37 Heptachlor epoxide ND 0.0010 1 02/13/2025 06:37 Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Endrin aldehyde	ND		0.0010	1		02/13/2025 06:37
Heptachlor epoxide	Endrin ketone	ND		0.0010	1		02/13/2025 06:37
Hexachlorobenzene ND 0.010 1 02/13/2025 06:37 Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Heptachlor	ND		0.0010	1		02/13/2025 06:37
Hexachlorocyclopentadiene ND 0.020 1 02/13/2025 06:37 Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Heptachlor epoxide	ND		0.0010	1		02/13/2025 06:37
Methoxychlor ND 0.0010 1 02/13/2025 06:37 Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Hexachlorobenzene	ND		0.010	1		02/13/2025 06:37
Toxaphene ND 0.20 1 02/13/2025 06:37 Surrogates REC (%) Limits	Hexachlorocyclopentadiene	ND		0.020	1		02/13/2025 06:37
Surrogates REC (%) Limits	Methoxychlor	ND		0.0010	1		02/13/2025 06:37
	Toxaphene	ND		0.20	1		02/13/2025 06:37
Decachlorobiphenyl 93 60-130 02/13/2025 06:37	<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
	Decachlorobiphenyl	93		60-130			02/13/2025 06:37

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/12/2025

Project: 2024-12-014; Madera Drive Property

Organochlorine Pesticides											
Client ID	Lab ID	Matrix	Date Colle	cted	Instrument	Batch ID					
TP-2 @ 3'	2502818-003A	Soil	02/12/2025 (08:40	GC40 02122571.d	311286					
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed					
Aldrin	ND		0.0020	2		02/13/2025 01:13					
a-BHC	ND		0.0020	2		02/13/2025 01:13					
b-BHC	ND		0.0020	2		02/13/2025 01:13					
d-BHC	ND		0.0020	2		02/13/2025 01:13					
g-BHC	ND		0.0020	2		02/13/2025 01:13					
Chlordane (Technical)	ND		0.050	2		02/13/2025 01:13					
a-Chlordane	ND		0.0020	2		02/13/2025 01:13					
g-Chlordane	ND		0.0020	2		02/13/2025 01:13					
p,p-DDD	ND		0.0020	2		02/13/2025 01:13					
p,p-DDE	0.029		0.0020	2		02/13/2025 01:13					
p,p-DDT	0.015		0.0020	2		02/13/2025 01:13					
Dieldrin	ND		0.0020	2		02/13/2025 01:13					
Endosulfan I	ND		0.0020	2		02/13/2025 01:13					
Endosulfan II	ND		0.0020	2		02/13/2025 01:13					
Endosulfan sulfate	ND		0.0020	2		02/13/2025 01:13					
Endrin	ND		0.0020	2		02/13/2025 01:13					
Endrin aldehyde	ND		0.0020	2		02/13/2025 01:13					
Endrin ketone	ND		0.0020	2		02/13/2025 01:13					
Heptachlor	ND		0.0020	2		02/13/2025 01:13					
Heptachlor epoxide	ND		0.0020	2		02/13/2025 01:13					
Hexachlorobenzene	ND		0.020	2		02/13/2025 01:13					
Hexachlorocyclopentadiene	ND		0.040	2		02/13/2025 01:13					
Methoxychlor	ND		0.0020	2		02/13/2025 01:13					
Toxaphene	ND		0.40	2		02/13/2025 01:13					
Surrogates	<u>REC (%)</u>		<u>Limits</u>								
Decachlorobiphenyl	95		60-130			02/13/2025 01:13					
Analyst(s): EEV			Analytical Comp	nents: a3	3						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/12/2025

Project: 2024-12-014; Madera Drive Property

Organochlorine Pesticides											
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID					
TP-3 @ 3'	2502818-005A	Soil	02/12/2025 (08:55	GC40 02122572.d	311286					
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed					
Aldrin	ND		0.0010	1		02/13/2025 01:28					
a-BHC	ND		0.0010	1		02/13/2025 01:28					
b-BHC	ND		0.0010	1		02/13/2025 01:28					
d-BHC	ND		0.0010	1		02/13/2025 01:28					
g-BHC	ND		0.0010	1		02/13/2025 01:28					
Chlordane (Technical)	ND		0.025	1		02/13/2025 01:28					
a-Chlordane	ND		0.0010	1		02/13/2025 01:28					
g-Chlordane	ND		0.0010	1		02/13/2025 01:28					
p,p-DDD	ND		0.0010	1		02/13/2025 01:28					
p,p-DDE	ND		0.0010	1		02/13/2025 01:28					
p,p-DDT	ND		0.0010	1		02/13/2025 01:28					
Dieldrin	ND		0.0010	1		02/13/2025 01:28					
Endosulfan I	ND		0.0010	1		02/13/2025 01:28					
Endosulfan II	ND		0.0010	1		02/13/2025 01:28					
Endosulfan sulfate	ND		0.0010	1		02/13/2025 01:28					
Endrin	ND		0.0010	1		02/13/2025 01:28					
Endrin aldehyde	ND		0.0010	1		02/13/2025 01:28					
Endrin ketone	ND		0.0010	1		02/13/2025 01:28					
Heptachlor	ND		0.0010	1		02/13/2025 01:28					
Heptachlor epoxide	ND		0.0010	1		02/13/2025 01:28					
Hexachlorobenzene	ND		0.010	1		02/13/2025 01:28					
Hexachlorocyclopentadiene	ND		0.020	1		02/13/2025 01:28					
Methoxychlor	ND		0.0010	1		02/13/2025 01:28					
Toxaphene	ND		0.20	1		02/13/2025 01:28					
<u>Surrogates</u>	REC (%)		<u>Limits</u>								
Decachlorobiphenyl	92		60-130			02/13/2025 01:28					
Analyst(s): EEV											

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/12/2025

Project: 2024-12-014; Madera Drive Property

Organochlorine Pesticides											
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID					
TP-4 @ 3'	2502818-007A	Soil	02/12/2025 (09:10	GC40 02122586.d	311286					
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed					
Aldrin	ND		0.0010	1		02/13/2025 04:54					
a-BHC	ND		0.0010	1		02/13/2025 04:54					
b-BHC	ND		0.0010	1		02/13/2025 04:54					
d-BHC	ND		0.0010	1		02/13/2025 04:54					
g-BHC	ND		0.0010	1		02/13/2025 04:54					
Chlordane (Technical)	ND		0.025	1		02/13/2025 04:54					
a-Chlordane	ND		0.0010	1		02/13/2025 04:54					
g-Chlordane	ND		0.0010	1		02/13/2025 04:54					
p,p-DDD	ND		0.0010	1		02/13/2025 04:54					
p,p-DDE	0.015		0.0010	1		02/13/2025 04:54					
p,p-DDT	0.0020		0.0010	1		02/13/2025 04:54					
Dieldrin	ND		0.0010	1		02/13/2025 04:54					
Endosulfan I	ND		0.0010	1		02/13/2025 04:54					
Endosulfan II	ND		0.0010	1		02/13/2025 04:54					
Endosulfan sulfate	ND		0.0010	1		02/13/2025 04:54					
Endrin	ND		0.0010	1		02/13/2025 04:54					
Endrin aldehyde	ND		0.0010	1		02/13/2025 04:54					
Endrin ketone	ND		0.0010	1		02/13/2025 04:54					
Heptachlor	ND		0.0010	1		02/13/2025 04:54					
Heptachlor epoxide	ND		0.0010	1		02/13/2025 04:54					
Hexachlorobenzene	ND		0.010	1		02/13/2025 04:54					
Hexachlorocyclopentadiene	ND		0.020	1		02/13/2025 04:54					
Methoxychlor	ND		0.0010	1		02/13/2025 04:54					
Toxaphene	ND		0.20	1		02/13/2025 04:54					
Surrogates	REC (%)		<u>Limits</u>								
Decachlorobiphenyl	92		60-130			02/13/2025 04:54					
Analyst(s): EEV											

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/12/2025

Project: 2024-12-014; Madera Drive Property

Organochlorine Pesticides											
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID					
TP-3 @ 3' DUP	2502818-009A	Soil	02/12/2025 (08:55	GC40 02122573.d	311286					
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed					
Aldrin	ND		0.0010	1		02/13/2025 01:43					
a-BHC	ND		0.0010	1		02/13/2025 01:43					
b-BHC	ND		0.0010	1		02/13/2025 01:43					
d-BHC	ND		0.0010	1		02/13/2025 01:43					
g-BHC	ND		0.0010	1		02/13/2025 01:43					
Chlordane (Technical)	ND		0.025	1		02/13/2025 01:43					
a-Chlordane	ND		0.0010	1		02/13/2025 01:43					
g-Chlordane	ND		0.0010	1		02/13/2025 01:43					
p,p-DDD	ND		0.0010	1		02/13/2025 01:43					
p,p-DDE	ND		0.0010	1		02/13/2025 01:43					
p,p-DDT	ND		0.0010	1		02/13/2025 01:43					
Dieldrin	ND		0.0010	1		02/13/2025 01:43					
Endosulfan I	ND		0.0010	1		02/13/2025 01:43					
Endosulfan II	ND		0.0010	1		02/13/2025 01:43					
Endosulfan sulfate	ND		0.0010	1		02/13/2025 01:43					
Endrin	ND		0.0010	1		02/13/2025 01:43					
Endrin aldehyde	ND		0.0010	1		02/13/2025 01:43					
Endrin ketone	ND		0.0010	1		02/13/2025 01:43					
Heptachlor	ND		0.0010	1		02/13/2025 01:43					
Heptachlor epoxide	ND		0.0010	1		02/13/2025 01:43					
Hexachlorobenzene	ND		0.010	1		02/13/2025 01:43					
Hexachlorocyclopentadiene	ND		0.020	1		02/13/2025 01:43					
Methoxychlor	ND		0.0010	1		02/13/2025 01:43					
Toxaphene	ND		0.20	1		02/13/2025 01:43					
Surrogates	<u>REC (%)</u>		<u>Limits</u>								
Decachlorobiphenyl	88		60-130			02/13/2025 01:43					
Analyst(s): EEV											

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/13/2025

Project: 2024-12-014; Madera Drive Property

		Metal	ls			
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
TP-1 @ 3'	2502818-001A	Soil	02/12/2025	09:19	ICP-MS4 177SMPL.d	311249
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	5.1		0.50	1		02/13/2025 15:06
Surrogates	REC (%)		<u>Limits</u>			
Terbium	104		70-130			02/13/2025 15:06
Analyst(s): MIG						

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
TP-2 @ 3'	2502818-003A	Soil	02/12/202	5 08:40	ICP-MS4 203SMPL.d	311249
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.9		0.50	1		02/13/2025 16:52
Surrogates	REC (%)		<u>Limits</u>			
Terbium	100		70-130)		02/13/2025 16:52
Analyst(s): DB						

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
TP-3 @ 3'	2502818-005A	Soil	02/12/202	5 08:55	ICP-MS4 204SMPL.d	311249
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.7		0.50	1		02/13/2025 16:56
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	100		70-130	1		02/13/2025 16:56
Analyst(s): DB						

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/13/2025

Project: 2024-12-014; Madera Drive Property

Metals												
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID						
TP-4 @ 3'	2502818-007A	Soil	02/12/202	5 09:10	ICP-MS4 205SMPL.d	311249						
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed						
Arsenic	4.4		0.50	1		02/13/2025 17:00						
Surrogates	<u>REC (%)</u>		<u>Limits</u>									
Terbium	101		70-130)		02/13/2025 17:00						
Analyst(s): DB												

Client ID	Lab ID	Lab ID Matrix			Instrument	Batch ID
TP-3 @ 3' DUP	2502818-009A	Soil	02/12/2025	08:55	ICP-MS4 206SMPL.d	311249
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.5		0.50	1		02/13/2025 17:04
Surrogates	REC (%)		<u>Limits</u>			
Terbium	100		70-130			02/13/2025 17:04
Analyst(s): DB						

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/12/2025Date Analyzed: 02/13/2025Instrument: GC40Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311286

Extraction Method: SW3550B **Analytical Method:** SW8081B

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311286

QC Summary Report for SW8081B										
Analyte	MB Result	MDL	RL	SPK Val	MB IS/SS %REC	MB IS/SS Limits				
Aldrin	ND	0.00042	0.0010	-	-	-				
a-BHC	ND	0.00045	0.0010	-	-	-				
b-BHC	ND	0.00038	0.0010	-	-	-				
d-BHC	ND	0.00036	0.0010	-	-	-				
g-BHC	ND	0.00036	0.0010	-	-	-				
a-Chlordane	ND	0.00035	0.0010	-	-	-				
g-Chlordane	ND	0.00067	0.0010	-	-	-				
p,p-DDD	ND	0.00057	0.0010	-	-	-				
o,p-DDT	ND	0.00040	0.0010	-	-	-				
p,p-DDE	ND	0.00034	0.0010	-	-	-				
p,p-DDT	ND	0.00043	0.0010	-	-	-				
Dieldrin	ND	0.00041	0.0010	-	-	-				
Endosulfan I	ND	0.00040	0.0010	-	-	-				
Endosulfan II	ND	0.00051	0.0010	-	-	-				
Endosulfan sulfate	ND	0.00040	0.0010	-	-	-				
Endrin	ND	0.00045	0.0010	-	-	-				
Endrin aldehyde	ND	0.00045	0.0010	-	-	-				
Endrin ketone	ND	0.00042	0.0010	-	-	-				
Heptachlor	ND	0.00067	0.0010	-	-	-				
Heptachlor epoxide	ND	0.00041	0.0010	-	-	-				
Hexachlorobenzene	ND	0.00038	0.010	-	-	-				
Hexachlorocyclopentadiene	ND	0.00064	0.020	-	=	-				
Methoxychlor	ND	0.00063	0.0010	-	=	-				
Toxaphene	ND	0.064	0.20	-	-	- 1				
Surrogate Recovery										
Decachlorobiphenyl	0.045			0.05	90	70-130				

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/12/2025Date Analyzed: 02/13/2025Instrument: GC40Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311286

Extraction Method: SW3550B **Analytical Method:** SW8081B

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311286

QC Summary Report for SW8081B											
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit			
Aldrin	0.053	0.054	0.050	107	108	70-130	1.44	20			
a-BHC	0.058	0.058	0.050	115	117	70-130	1.34	20			
b-BHC	0.054	0.054	0.050	107	109	70-130	1.44	20			
d-BHC	0.053	0.054	0.050	107	108	70-130	1.37	20			
g-BHC	0.057	0.058	0.050	114	116	70-130	1.85	20			
a-Chlordane	0.047	0.047	0.050	93	95	70-130	1.99	20			
g-Chlordane	0.044	0.044	0.050	87	89	70-130	1.75	20			
p,p-DDD	0.051	0.051	0.050	101	102	70-130	0.815	20			
p,p-DDE	0.051	0.052	0.050	102	103	70-130	1.12	20			
p,p-DDT	0.046	0.047	0.050	92	94	70-130	2.83	20			
Dieldrin	0.048	0.048	0.050	96	97	70-130	1.27	20			
Endosulfan I	0.047	0.048	0.050	95	96	70-130	1.34	20			
Endosulfan II	0.041	0.042	0.050	81	85	70-130	4.10	20			
Endosulfan sulfate	0.047	0.048	0.050	94	97	70-130	2.52	20			
Endrin	0.055	0.055	0.050	109	111	70-130	1.01	20			
Endrin aldehyde	0.045	0.046	0.050	90	93	70-130	2.57	20			
Endrin ketone	0.048	0.050	0.050	96	99	70-130	3.52	20			
Heptachlor	0.055	0.056	0.050	111	113	70-130	1.96	20			
Heptachlor epoxide	0.049	0.050	0.050	99	101	70-130	1.66	20			
Hexachlorobenzene	0.053	0.053	0.050	106	107	70-130	1.38	20			
Hexachlorocyclopentadiene	0.066	0.069	0.050	131,F2	138,F2	50-130	5.04	20			
Methoxychlor	0.044	0.046	0.050	89	91	70-130	2.76	20			
Surrogate Recovery											
Decachlorobiphenyl	0.047	0.047	0.050	94	94	70-130	0.0993	20			

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/12/2025Date Analyzed: 02/13/2025Instrument: GC40Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
BatchID: 311286
Extraction Method: SW3550B

Analytical Method: SW8081B

Unit: mg/kg

Sample ID:

2502818-001AMS/MSD

QC Summary Report for SW8081B

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aldrin	1	0.048	0.048	0.050	ND	95	96	60-130	0.730	20
a-BHC	1	0.048	0.048	0.050	ND	95	95	60-130	0.451	20
b-BHC	1	0.050	0.050	0.050	ND	99	101	60-130	1.19	20
d-BHC	1	0.047	0.047	0.050	ND	93	95	60-130	1.42	20
g-BHC	1	0.045	0.045	0.050	ND	90	91	60-130	0.781	20
a-Chlordane	1	0.053	0.054	0.050	0.001003	104	105	60-130	0.878	20
g-Chlordane	1	0.053	0.054	0.050	0.001022	104	105	60-130	0.840	20
p,p-DDD	1	0.059	0.060	0.050	0.001865	115	116	60-130	0.581	20
p,p-DDE	1	0.13	0.13	0.050	0.06406	117	123	60-130	2.27	20
p,p-DDT	1	0.081	0.081	0.050	0.01824	115	115	60-130	0.0586	20
Dieldrin	1	0.056	0.056	0.050	ND	112	112	60-130	0.651	20
Endosulfan I	1	0.058	0.059	0.050	ND	115	116	60-130	1.21	20
Endosulfan II	1	0.058	0.058	0.050	ND	115	116	60-130	0.468	20
Endosulfan sulfate	1	0.061	0.061	0.050	ND	123	123	60-130	0.109	20
Endrin	1	0.063	0.063	0.050	ND	126	127	60-130	0.447	20
Endrin aldehyde	1	0.056	0.056	0.050	ND	112	113	60-130	0.401	20
Endrin ketone	1	0.057	0.057	0.050	ND	114	114	60-130	0.301	20
Heptachlor	1	0.053	0.054	0.050	ND	107	109	60-130	1.80	20
Heptachlor epoxide	1	0.057	0.058	0.050	ND	115	116	60-130	1.24	20
Hexachlorobenzene	1	0.049	0.049	0.050	ND	97	98	60-130	0.985	20
Hexachlorocyclopentadiene	1	0.069	0.070	0.050	ND	139,F1	140,F1	50-130	0.647	20
Methoxychlor	1	0.072	0.070	0.050	ND	143,F1	140,F1	60-130	2.35	20
Surrogate Recovery										
Decachlorobiphenyl	1	0.048	0.046	0.050		96	93	60-130	3.27	20

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/13/2025Date Analyzed: 02/13/2025Instrument: ICP-MS4Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311249

Extraction Method: SW3050B **Analytical Method:** SW6020

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311249

2502818-001AMS/MSD

		QC Su	mmary R	eport fo	r Metals					
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC		B IS/SS mits
Arsenic		ND		0.10	0.50		-	-	-	
Surrogate Recovery										
Terbium		490					500	98	7	70-130
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic		50	48	50		101	96	75-125	4.77	20
Surrogate Recovery										
Terbium		510	490	500		102	98	70-130	4.48	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Arsenic	1	55	54	50	5.129	99	98	75-125	1.14	20
Surrogate Recovery										
Terbium	1	520	510	500		103	102	70-130	1.73	20
Analyte		DLT Result			DLTRef Val				%D	%D Limit
Arsenic		4.4			5.1				13.6	-

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2502818 ClientCode: EAVS

EQuIS Dry-Weight Email HardCopy ThirdParty J-flag

Detection Summary Excel

Report to: Bill to: Requested TAT: 5 days;

□ EDF

James RobinsonEmail:james@enviroassess.comJames RobinsonEnviro Asssessment PCcc/3rd Party:service@enviroassessment.com;Enviro Assess

CLIP

☐ WaterTrax

 1869 E Seltice Way #570
 PO:
 1869 E Seltice Way #570
 Date Received:
 02/12/2025

 Post Falls, ID 83854
 Project:
 2024-12-014; Madera Drive Property
 Post Falls, ID 83854
 Date Logged:
 02/12/2025

877-629-6838 FAX: 877-623-5493 james@enviroassess.com; fabiola@envi

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2502818-001	TP-1 @ 3'	Soil	2/12/2025 09:19		Α	Α	Α									
2502818-002	TP-1 @ 4'	Soil	2/12/2025 09:25	V			Α	Α								
2502818-003	TP-2 @ 3'	Soil	2/12/2025 08:40		Α	Α	Α									
2502818-004	TP-2 @ 4'	Soil	2/12/2025 08:45	✓			Α	Α								
2502818-005	TP-3 @ 3'	Soil	2/12/2025 08:55		Α	Α	Α									
2502818-006	TP-3 @ 4'	Soil	2/12/2025 09:00	✓			Α	Α								
2502818-007	TP-4 @ 3'	Soil	2/12/2025 09:10		Α	Α	Α									
2502818-008	TP-4 @ 4'	Soil	2/12/2025 09:14	✓			Α	Α								
2502818-009	TP-3 @ 3' DUP	Soil	2/12/2025 08:55		Α	Α	Α									

Test Legend:

1 8081_S	2 METALSMS_TTLC_S	3 PRDisposal Fee
5	6	7
9	10	11

Prepared by: Lilly Ortiz

PRHOLD

4

8 12

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-014; Madera Drive Property Work Order: 2502818

Client Contact: James Robinson QC Level: LEVEL 2

Contact's Email: james@enviroassess.com

Comments

Date Logged: 2/12/2025

		Water	Trax CLIP	EDF		Excel	EQul	S	Ema	il HardCopy	Third	IParty ☐ J-flaç)		
LabID	ClientSampID	Matrix	Test Name		Cont./ Comp.	Bottle & Preservative	U**		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Su O	
001A	TP-1 @ 3'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, Medium	,			2/12/2025 9:19	5 days	2/20/2025			
			SW8081B (OC Pesticides)								5 days	2/20/2025			
003A	TP-2 @ 3'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, Medium	,			2/12/2025 8:40	5 days	2/20/2025			
			SW8081B (OC Pesticides)								5 days	2/20/2025			
005A	TP-3 @ 3'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, Medium	,			2/12/2025 8:55	5 days	2/20/2025			<u> </u>
			SW8081B (OC Pesticides)								5 days	2/20/2025			
007A	TP-4 @ 3'	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie, Medium	,			2/12/2025 9:10	5 days	2/20/2025			
			SW8081B (OC Pesticides)								5 days	2/20/2025			
009A	TP-3 @ 3' DUP	Soil	SW6020 (Metals) <arsenic></arsenic>		1	Plastic Baggie Medium	,			2/12/2025 8:55	5 days	2/20/2025]
			SW8081B (OC Pesticides)								5 days	2/20/2025			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 1

McCAMP	REII	ANAI	I VI	TICAL	INC						СНА	IN OF	CU	STO	DV	REC	'OR	<u>n</u>					
	Villow Pass				, IIIC.	Tues	Aroun	d Time	:1 Day	Duch	-	y Rush	-	3 Day		_	STD		Ou	oto #		-	NO POLICE
				5) 252-9269		_	/ MDL	_	ESL	Kusii		up Appro	-		Dry W	-	SID	Rott	le Or	ote#			
www.mccampb				ocampbell.	com	_	ery Fo		PDF		GeoTracko		_	EDD	Dly W		te On				ect Sur	nmary	
Report To: James Robinson	Jen.com	NAME OF TAXABLE PARTY.	CONTROL CONTROL	Robinson		Denv	cry 10.	mat.	TDI	and the second	GCOTTACK	THE RESERVED	College of the	Name and Address of the Owner, where	ueste	DESCRIPTION OF THE PERSONS	te on	(DW)	-	Dete	et sui	mary	personani di
Company: Enviro Assessment, PC		Bill To.	burnoc	TODITION		\vdash	Г	Г	П			T	T		T	T			Ι				
Email: james@enviroassessment.com (N	New Email)																						
Alt Email: Service@enviroassessment.co		Tele:		844-742-7	311				SE														
Project Name: Madera Drive Property		Project #:		2024-12-0	014																		
Project Location: Cupertino, CA		PO#				1			¥					- 1									
Sampler Signature: Sign Mu				7					SAMPI					l									
SAMPLE ID	Sam	pling	iners			Ps	enic																
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	00	Arsenic		HOL														
TP-1 @ 3'	2/12/25	0919	1	Soil	ice	•	•																
TP-1 @ 4'	2/12/25	0925	1	Soil	ice				•														
TP-2 @ 3'	2/12/25	0840	1	Soil	ice	•	•																
TP-2 @ 4'	2/12/28	0845	1	Soil	ice				•														
TP-3 @ 3'	2/12/25	0855	1	Soil	ice	•	•																
TP-3 @ 4'	2/12/25	0900	1	Soil	ice				•													siz.	
TP-4 @ 3'	2/12/25	0910	1	Soil	ice	•	•																
TP-4 @ 4'	2/13/25	0914	1	Soil	ice				•														
TP-3 @ 3' DUP	2/12/25	0855	1	Soil	ice	•	•																
MAI clients MUST disclose any dangerous chemical Non-disclosure incurs an immediate \$250 surcharge														it as a r	esult of	brief, g	gloved,	open	air, sam	ple han	dling b	y MAI s	taff.
* If metals are requested for water samples and	the water type	e (Matrix) is	not spec	ified on the cl	nain of custody	, MAI	will d	efault t	o metal	ls by E	2200.8.					Т		C	ommen	ts / Ins	tructio	ns	
Please provide an adequate volume of sample.	If the volume	is not sufficie	ent for a	MS/MSD a L	CS/LCSD will	be pro	epared	in its p	olace an	d note	d in the repo	ort.					NO	ES	L				
Relinquished By / Company					ime		Recei		y / Com		Name		Da	te	Tin	ne							
SELEN ASHE / ENVIRO ASSESSMEN	y , Pc		7/12	125 ///	3			1	ille	1	Il.	50	110	14	111	3							
			-		0				/					-		_							
Matrix Codes DW-Drinking Water C	W-C	J Weton W	/W-W	lasta Water	CW-Carr	nton	C_C-	:1 CT	-C1.	las A	_A:_ 3371	D-Wis a	0	Otha		-							
Matrix Code: DW=Drinking Water, G Preservative Code: 1=4°C 2=HCl									-Siuc	ige, F	A-Air, WI	-wipe	, 0=	-Otne		L emp	7	11	°C	/Init	ials		1
1100011441110 0040. 1-4 0 2-1101	5 112504	, 111103	5 140	.011 0 21	10/10/11001	. /	1 1011								10	- ⁴		IR		_1111	1413	0	
																	- (1-					

Sample Receipt Checklist

Client Name: Enviro Asssessment PC Project: 2024-12-014; Madera Drive Property				Date and ¹ Date Logg Received I		2/12/2025 11:13 2/12/2025 Lilly Ortiz
WorkOrder №: Carrier:	2502818 Matrix: Soil Client Drop-In			Logged by	-	Lilly Ortiz
	Chain of	Custody	(COC)	<u>Information</u>		
Chain of custody	present?	Yes	•	No \square		
Chain of custody	signed when relinquished and received?	Yes	•	No 🗆		
Chain of custody	agrees with sample labels?	Yes	•	No 🗆		
Sample IDs note	d by Client on COC?	Yes	•	No 🗆		
Date and Time o	f collection noted by Client on COC?	Yes	•	No 🗆		
Sampler's name	noted on COC?	Yes	•	No 🗆		
COC agrees with	n Quote?	Yes		No 🗆	NA 🗹	
	Samı	ole Rece	eipt Infor	rmation		
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹	
Custody seals in	tact on sample bottles?	Yes		No 🗆	NA 🗹	
Shipping contain	er/cooler in good condition?	Yes	•	No 🗆		
Samples in prope	er containers/bottles?	Yes	•	No 🗌		
Sample containe	ers intact?	Yes	•	No 🗆		
Sufficient sample	e volume for indicated test?	Yes	•	No \square		
	Sample Preservat	ion and	Hold Ti	me (HT) Information	1	
All samples rece	ived within holding time?	Yes	✓	No 🗌	NA \square	
Samples Receive	ed on Ice?	Yes	✓	No 🗌		
	(Ice Ty	pe: WE	TICE)	_	
Sample/Temp Bl	ank temperature		Ten	np: 3.4°C	NA 🗌	
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹	
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
pH acceptable u	pon receipt (Metal: <2)?	Yes		No 🗌	NA 🗹	
UCMR Samples: pH tested and 537.1: 6 - 8)?	: acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗹	
Free Chlorine to [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗌	NA 🗹	
Comments:	==========	==:		=====		=======

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2502818 A

Report Created for: Enviro Asssessment PC

1869 E Seltice Way #570

Post Falls, ID 83854

Project Contact:

James Robinson

Project P.O.:

Project: 2024-12-014; Madera Drive Property

Project Location:

Cupertino, CA

Project Received:

02/12/2025

Analytical Report reviewed & approved for release on 02/28/2025 by:

Ana Venegas

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2502818 A

Project: 2024-12-014; Madera Drive Property

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: Enviro Asssessment PC WorkOrder: 2502818 A

Project: 2024-12-014; Madera Drive Property

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/24/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** TP-1 @ 4' 2502818-002A 02/12/2025 09:25 GC23 02252534.d 311981 Soil **Analytes** Result RL DF **Date Analyzed** ND 0.0010 02/26/2025 01:40 Aldrin 1 a-BHC ND 0.0010 1 02/26/2025 01:40 b-BHC ND 0.0010 02/26/2025 01:40 1 d-BHC ND 0.0010 1 02/26/2025 01:40 g-BHC ND 0.0010 02/26/2025 01:40 Chlordane (Technical) ND 0.025 1 02/26/2025 01:40 a-Chlordane ND 0.0010 1 02/26/2025 01:40 ND g-Chlordane 0.0010 1 02/26/2025 01:40 ND p,p-DDD 0.0010 1 02/26/2025 01:40 p,p-DDE 0.042 0.0010 1 02/26/2025 01:40 p,p-DDT 0.011 0.0010 1 02/26/2025 01:40 Dieldrin ND 0.0010 02/26/2025 01:40 ND Endosulfan I 0.0010 1 02/26/2025 01:40 Endosulfan II ND 0.0010 02/26/2025 01:40 Endosulfan sulfate ND 0.0010 1 02/26/2025 01:40 Endrin ND 0.0010 1 02/26/2025 01:40 Endrin aldehyde ND 0.0010 1 02/26/2025 01:40 Endrin ketone ND 0.0010 1 02/26/2025 01:40 ND Heptachlor 0.0010 1 02/26/2025 01:40 Heptachlor epoxide ND 0.0010 1 02/26/2025 01:40 ND 0.010 1 Hexachlorobenzene 02/26/2025 01:40 Hexachlorocyclopentadiene ND 0.020 1 02/26/2025 01:40 ND 0.0010 1 02/26/2025 01:40 Methoxychlor Toxaphene ND 0.20 02/26/2025 01:40 Surrogates **REC (%) Limits** Decachlorobiphenyl 100 60-130 02/26/2025 01:40 Analyst(s): CN

Analytical Report

Client: Enviro Asssessment PC **Date Received:** 02/12/2025 11:13

Date Prepared: 02/24/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides										
Client ID	Lab ID	Matrix	Date Colle	cted	Instrument	Batch ID				
TP-2 @ 4'	2502818-004A	Soil	02/12/2025 (08:45	GC23 02252546.d	311981				
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed				
Aldrin	ND		0.0010	1		02/26/2025 04:37				
a-BHC	ND		0.0010	1		02/26/2025 04:37				
b-BHC	ND		0.0010	1		02/26/2025 04:37				
d-BHC	ND		0.0010	1		02/26/2025 04:37				
g-BHC	ND		0.0010	1		02/26/2025 04:37				
Chlordane (Technical)	ND		0.025	1		02/26/2025 04:37				
a-Chlordane	ND		0.0010	1		02/26/2025 04:37				
g-Chlordane	ND		0.0010	1		02/26/2025 04:37				
p,p-DDD	ND		0.0010	1		02/26/2025 04:37				
p,p-DDE	0.0015		0.0010	1		02/26/2025 04:37				
p,p-DDT	ND		0.0010	1		02/26/2025 04:37				
Dieldrin	ND		0.0010	1		02/26/2025 04:37				
Endosulfan I	ND		0.0010	1		02/26/2025 04:37				
Endosulfan II	ND		0.0010	1		02/26/2025 04:37				
Endosulfan sulfate	ND		0.0010	1		02/26/2025 04:37				
Endrin	ND		0.0010	1		02/26/2025 04:37				
Endrin aldehyde	ND		0.0010	1		02/26/2025 04:37				
Endrin ketone	ND		0.0010	1		02/26/2025 04:37				
Heptachlor	ND		0.0010	1		02/26/2025 04:37				
Heptachlor epoxide	ND		0.0010	1		02/26/2025 04:37				
Hexachlorobenzene	ND		0.010	1		02/26/2025 04:37				
Hexachlorocyclopentadiene	ND		0.020	1		02/26/2025 04:37				
Methoxychlor	ND		0.0010	1		02/26/2025 04:37				
Toxaphene	ND		0.20	1		02/26/2025 04:37				
Surrogates	<u>REC (%)</u>		<u>Limits</u>							
Decachlorobiphenyl	97		60-130			02/26/2025 04:37				
Analyst(s): CN										

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/24/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides										
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID				
TP-3 @ 4'	2502818-006A	Soil	02/12/2025	09:00	GC23 02252547.d	311981				
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed				
Aldrin	ND		0.0010	1		02/26/2025 04:51				
a-BHC	ND		0.0010	1		02/26/2025 04:51				
b-BHC	ND		0.0010	1		02/26/2025 04:51				
d-BHC	ND		0.0010	1		02/26/2025 04:51				
g-BHC	ND		0.0010	1		02/26/2025 04:51				
Chlordane (Technical)	ND		0.025	1		02/26/2025 04:51				
a-Chlordane	ND		0.0010	1		02/26/2025 04:51				
g-Chlordane	ND		0.0010	1		02/26/2025 04:51				
p,p-DDD	ND		0.0010	1		02/26/2025 04:51				
p,p-DDE	0.0026		0.0010	1		02/26/2025 04:51				
p,p-DDT	0.0014		0.0010	1		02/26/2025 04:51				
Dieldrin	ND		0.0010	1		02/26/2025 04:51				
Endosulfan I	ND		0.0010	1		02/26/2025 04:51				
Endosulfan II	ND		0.0010	1		02/26/2025 04:51				
Endosulfan sulfate	ND		0.0010	1		02/26/2025 04:51				
Endrin	ND		0.0010	1		02/26/2025 04:51				
Endrin aldehyde	ND		0.0010	1		02/26/2025 04:51				
Endrin ketone	ND		0.0010	1		02/26/2025 04:51				
Heptachlor	ND		0.0010	1		02/26/2025 04:51				
Heptachlor epoxide	ND		0.0010	1		02/26/2025 04:51				
Hexachlorobenzene	ND		0.010	1		02/26/2025 04:51				
Hexachlorocyclopentadiene	ND		0.020	1		02/26/2025 04:51				
Methoxychlor	ND		0.0010	1		02/26/2025 04:51				
Toxaphene	ND		0.20	1		02/26/2025 04:51				
<u>Surrogates</u>	REC (%)		<u>Limits</u>							
Decachlorobiphenyl	99		60-130			02/26/2025 04:51				
Analyst(s): CN										

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/24/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
Extraction Method: SW3550B
Analytical Method: SW8081B
Unit: mg/kg

Organochlorine Pesticides Client ID Lab ID **Matrix Date Collected** Instrument **Batch ID** TP-4 @ 4' 2502818-008A Soil 02/12/2025 09:14 GC23 02252549.d 311981 **Analytes** Result RL DF **Date Analyzed** ND 0.0010 02/26/2025 05:21 Aldrin 1 a-BHC ND 0.0010 1 02/26/2025 05:21 b-BHC ND 0.0010 02/26/2025 05:21 1 d-BHC ND 0.0010 1 02/26/2025 05:21 g-BHC ND 0.0010 02/26/2025 05:21 Chlordane (Technical) ND 0.025 1 02/26/2025 05:21 a-Chlordane ND 0.0010 1 02/26/2025 05:21 ND g-Chlordane 0.0010 1 02/26/2025 05:21 ND p,p-DDD 0.0010 1 02/26/2025 05:21 p,p-DDE 0.050 0.0010 1 02/26/2025 05:21 p,p-DDT 0.0072 0.0010 1 02/26/2025 05:21 Dieldrin ND 0.0010 02/26/2025 05:21 ND Endosulfan I 0.0010 1 02/26/2025 05:21 ND Endosulfan II 0.0010 02/26/2025 05:21 Endosulfan sulfate ND 0.0010 1 02/26/2025 05:21 Endrin ND 0.0010 1 02/26/2025 05:21 Endrin aldehyde ND 0.0010 1 02/26/2025 05:21 Endrin ketone ND 0.0010 1 02/26/2025 05:21 ND Heptachlor 0.0010 1 02/26/2025 05:21 Heptachlor epoxide ND 0.0010 1 02/26/2025 05:21 ND 0.010 1 Hexachlorobenzene 02/26/2025 05:21 Hexachlorocyclopentadiene ND 0.020 1 02/26/2025 05:21 ND 0.0010 1 02/26/2025 05:21 Methoxychlor Toxaphene ND 0.20 02/26/2025 05:21 Surrogates **REC (%) Limits** Decachlorobiphenyl 97 60-130 02/26/2025 05:21 Analyst(s): CN

Analytical Report

Client: Enviro Asssessment PC

Date Received: 02/12/2025 11:13

Date Prepared: 02/25/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/kg

Metals											
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID					
TP-1 @ 4'	2502818-002A	Soil	02/12/2025	09:25	ICP-MS5 303SMPL.d	311931					
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed					
Arsenic	5.8		0.50	1		02/25/2025 22:56					
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>								
Terbium	111		70-130			02/25/2025 22:56					
Analyst(s): WV											

Client ID	Lab ID	Matrix	Date Collected I		Instrument	Batch ID
TP-2 @ 4'	2502818-004A	Soil	02/12/2025	08:45	ICP-MS5 304SMPL.d	311931
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	4.1		0.50	1		02/25/2025 23:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	106		70-130			02/25/2025 23:00
Analyst(s): WV						

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
TP-3 @ 4'	2502818-006A	Soil	02/12/202	25 09:00	ICP-MS5 305SMPL.d	311931
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	3.9		0.50	1		02/25/2025 23:04
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	108		70-130)		02/25/2025 23:04
Analyst(s): WV						

Analytical Report

Client: Enviro Asssessment PC **Date Received:** 02/12/2025 11:13 **Date Prepared:** 02/25/2025

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **Extraction Method: SW3050B Analytical Method:** SW6020 Unit: mg/kg

		Meta	ls			
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
TP-4 @ 4'	2502818-008A	Soil	02/12/202	5 09:14	ICP-MS4 186SMPL.d	311978
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	4.2		0.50	1		02/25/2025 16:50
<u>Surrogates</u>	REC (%)		<u>Limits</u>			

Analyst(s): AL

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/24/2025Date Analyzed: 02/26/2025Instrument: GC23Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311981

Extraction Method: SW3550B **Analytical Method:** SW8081B

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311981

2502818-002AMS/MSD

	QC Summary	Report for SV	W8081B			
Analyte	MB Result	MDL	RL	SPK Val	MB IS/SS %REC	MB IS/SS Limits
Aldrin	ND	0.00042	0.0010	-	-	=
a-BHC	ND	0.00045	0.0010	-	-	-
b-BHC	ND	0.00038	0.0010	-	-	-
d-BHC	ND	0.00036	0.0010	-	-	-
g-BHC	ND	0.00036	0.0010	-	-	-
Chlordane (Technical)	ND	0.010	0.025	-	-	-
a-Chlordane	ND	0.00035	0.0010	-	-	-
g-Chlordane	ND	0.00067	0.0010	-	-	-
p,p-DDD	ND	0.00057	0.0010	-	-	-
p,p-DDE	ND	0.00034	0.0010	-	-	-
p,p-DDT	ND	0.00043	0.0010	-	-	-
Dieldrin	ND	0.00041	0.0010	-	-	-
Endosulfan I	ND	0.00040	0.0010	-	-	-
Endosulfan II	ND	0.00051	0.0010	-	-	-
Endosulfan sulfate	ND	0.00040	0.0010	-	-	-
Endrin	ND	0.00045	0.0010	-	-	-
Endrin aldehyde	ND	0.00045	0.0010	-	-	-
Endrin ketone	ND	0.00042	0.0010	-	-	-
Heptachlor	ND	0.00067	0.0010	-	-	-
Heptachlor epoxide	ND	0.00041	0.0010	-	-	-
Hexachlorobenzene	ND	0.00038	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.00064	0.020	-	-	-
Methoxychlor	ND	0.00063	0.0010	-	-	-
Toxaphene	ND	0.064	0.20	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.042			0.05	84	70-130

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared:02/24/2025Date Analyzed:02/26/2025Instrument:GC23

Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311981

Extraction Method: SW3550B **Analytical Method:** SW8081B

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311981

2502818-002AMS/MSD

QC Summary Report for SW8081B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.045	0.044	0.050	89	89	70-130	0.724	20
a-BHC	0.043	0.041	0.050	86	83	70-130	3.72	20
b-BHC	0.042	0.043	0.050	84	85	70-130	1.35	20
d-BHC	0.043	0.044	0.050	85	87	70-130	2.45	20
g-BHC	0.042	0.042	0.050	84	83	70-130	0.327	20
a-Chlordane	0.042	0.043	0.050	85	86	70-130	1.81	20
g-Chlordane	0.042	0.043	0.050	84	86	70-130	1.67	20
p,p-DDD	0.042	0.043	0.050	84	86	70-130	2.16	20
p,p-DDE	0.043	0.044	0.050	87	88	70-130	1.72	20
p,p-DDT	0.039	0.041	0.050	79	83	70-130	4.62	20
Dieldrin	0.043	0.043	0.050	86	87	70-130	1.10	20
Endosulfan I	0.043	0.043	0.050	85	86	70-130	1.33	20
Endosulfan II	0.041	0.041	0.050	81	83	70-130	2.38	20
Endosulfan sulfate	0.040	0.042	0.050	81	84	70-130	3.59	20
Endrin	0.043	0.044	0.050	86	88	70-130	2.36	20
Endrin aldehyde	0.040	0.042	0.050	81	83	70-130	3.08	20
Endrin ketone	0.037	0.039	0.050	75	77	70-130	3.19	20
Heptachlor	0.045	0.046	0.050	91	92	70-130	1.76	20
Heptachlor epoxide	0.043	0.044	0.050	87	88	70-130	1.19	20
Hexachlorobenzene	0.046	0.046	0.050	92	92	70-130	0.0285	20
Hexachlorocyclopentadiene	0.040	0.043	0.050	81	86	50-130	5.99	20
Methoxychlor	0.039	0.041	0.050	79	82	70-130	4.57	20

Decachlorobiphenyl 0.040 0.043 0.050 81 85 70-130 5.39 20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aldrin	1	0.046	0.045	0.050	ND	92	89	60-130	2.54	20
a-BHC	1	0.043	0.042	0.050	ND	87	84	60-130	3.50	20
b-BHC	1	0.040	0.039	0.050	ND	80	78	60-130	2.74	20
d-BHC	1	0.042	0.041	0.050	ND	84	81	60-130	3.83	20
g-BHC	1	0.039	0.038	0.050	ND	78	76	60-130	1.73	20
a-Chlordane	1	0.043	0.041	0.050	ND	84	81	60-130	3.72	20
g-Chlordane	1	0.043	0.041	0.050	ND	84	81	60-130	3.69	20
p,p-DDD	1	0.042	0.040	0.050	ND	83	79	60-130	4.54	20
p,p-DDE	1	0.082	0.078	0.050	0.04200	81	72	60-130	5.68	20

(Cont.)

Quality Control Report

Client: Enviro Asssessment PC

Soil

Date Prepared:02/24/2025Date Analyzed:02/26/2025Instrument:GC23

Matrix:

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311981

Extraction Method: SW3550B

Analytical Method: SW8081B

Unit: mg/kg

Sample ID: MB/LCS/LCSD-311981

2502818-002AMS/MSD

OC Summary Report for SW8081B

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
p,p-DDT	1	0.050	0.047	0.050	0.01051	79	73	60-130	5.55	20
Dieldrin	1	0.043	0.041	0.050	ND	86	82	60-130	3.86	20
Endosulfan I	1	0.042	0.041	0.050	ND	84	82	60-130	3.22	20
Endosulfan II	1	0.042	0.040	0.050	ND	83	79	60-130	4.61	20
Endosulfan sulfate	1	0.041	0.039	0.050	ND	82	78	60-130	5.09	20
Endrin	1	0.043	0.041	0.050	ND	86	83	60-130	4.28	20
Endrin aldehyde	1	0.039	0.037	0.050	ND	78	74	60-130	4.54	20
Endrin ketone	1	0.037	0.036	0.050	ND	74	71	60-130	4.02	20
Heptachlor	1	0.045	0.044	0.050	ND	91	89	60-130	2.07	20
Heptachlor epoxide	1	0.043	0.042	0.050	ND	85	83	60-130	2.48	20
Hexachlorobenzene	1	0.045	0.045	0.050	ND	90	89	60-130	1.12	20
Hexachlorocyclopentadiene	1	0.036	0.033	0.050	ND	73	66	50-130	9.74	20
Methoxychlor	1	0.042	0.040	0.050	ND	85	80	60-130	6.25	20
Surrogate Recovery										
Decachlorobiphenyl	1	0.040	0.038	0.050		80	75	60-130	6.50	20

Quality Control Report

Client:Enviro Asssessment PCWorkOrder:2502818Date Prepared:02/25/2025BatchID:311931Date Analyzed:02/25/2025Extraction Method:SW3050B

Instrument:ICP-MS5Analytical Method:SW6020Matrix:SoilUnit:mg/kg

Project: 2024-12-014; Madera Drive Property Sample ID: MB/LCS/LCSD-311931

	QC Sur	mmary R	Report for	Metals					
Analyte	MB Result		MDL	RL		SPK Val	MB IS/SS %REC		IS/SS nits
Arsenic	ND		0.10	0.50		-	-	-	
Surrogate Recovery									
Terbium	500					500	100	7	0-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	51	51	50		102	102	75-125	0.220	20
Surrogate Recovery									
Terbium	500	500	500		100	101	70-130	1.04	20

Quality Control Report

Client: Enviro Asssessment PC

Date Prepared: 02/25/2025Date Analyzed: 02/25/2025Instrument: ICP-MS4Matrix: Soil

Project: 2024-12-014; Madera Drive Property

WorkOrder: 2502818 **BatchID:** 311978

Extraction Method: SW3050B

Analytical Method: SW6020 **Unit:** mg/kg

Sample ID: MB/LCS/LCSD-311978

2502818-008AMS/MSD

		QC Su	mmary R	eport fo	r Metals					
Analyte		MB Result		MDL	RL		SPK Val	MB IS/SS %REC		IS/SS nits
Arsenic		ND		0.10	0.50		=	-	=	
Surrogate Recovery										
Terbium		520					500	104	7	0-130
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic		51	52	50		103	104	75-125	1.76	20
Surrogate Recovery										
Terbium		520	550	500		105	109	70-130	4.12	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Arsenic	1	55	56	50	4.156	102	105	75-125	2.06	20
Surrogate Recovery										
Terbium	1	530	520	500		105	105	70-130	0.760	20
Analyte		DLT Result			DLTRef Val				%D	%D Limit
Arsenic		4.5			4.2				7.92	_

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

1 of 1

Date Received:

□ J-flag

02/12/2025

02/12/2025

WorkOrder: 2502818 A ClientCode: EAVS

EQuIS Dry-Weight □Email ☐ HardCopy □ ThirdParty

■ Detection Summary □ Excel

Bill to: Report to: Requested TAT: 5 days;

□ EDF

James Robinson James Robinson Email: james@enviroassess.com cc/3rd Party: service@enviroassessment.com; Enviro Asssessment PC **Enviro Assess** 1869 E Seltice Way #570 1869 E Seltice Way #570

CLIP

□WaterTrax

PO:

Date Logged: Project: Post Falls, ID 83854 Post Falls, ID 83854 2024-12-014; Madera Drive Property

877-629-6838 FAX: 877-623-5493 james@enviroassess.com; fabiola@env Date Add-On: 02/24/2025

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2502818-002	TP-1 @ 4'	Soil	2/12/2025 09:25		Α	Α	Α									
2502818-004	TP-2 @ 4'	Soil	2/12/2025 08:45		Α	Α	Α									i
2502818-006	TP-3 @ 4'	Soil	2/12/2025 09:00		Α	Α	Α									i
2502818-008	TP-4 @ 4'	Soil	2/12/2025 09:14		Α	Α	Α									

Test Legend:

1	8081_S
5	
9	

2	METALSMS_TTLC_S
6	
10	

3	PRHOLD Credit
7	
11	

4	
8	
12	

Prepared by: Lilly Ortiz

Add-On Prepared By: Valerie Alfaro

Comments: Took samples 2,4,6,8 off hold for OCPs & Arsenic 2/24/2025 STAT.

> NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Client Contact: James Robinson

Contact's Email james@enviroassess.com

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: ENVIRO ASSSESSMENT PC Project: 2024-12-014; Madera Drive Property

Work Order: 2502818

Comments: Took samples 2,4,6,8 off hold for OCPs & Arsenic 2/24/2025

QC Level: LEVEL 2

Date Logged: 2/12/2025

STAT.

Date Add-On: 2/24/2025

											. 011. 2/2	.,	
LabID	ClientSampID	Matrix	Test Name	Cont. /Comp	Bottle & Preservative	U** Head Space	Dry- Weight		TAT	Test Due Date	Sediment Content		Sub Out
002A	TP-1 @ 4'	Soil	SW6020 (Metals) <arsenic></arsenic>	1	Plastic Baggie, Medium			2/12/2025 9:25	5 days	3/3/2025			
			SW8081B (OC Pesticides)						5 days	3/3/2025			
004A	TP-2 @ 4'	Soil	SW6020 (Metals) <arsenic></arsenic>	1	Plastic Baggie, Medium			2/12/2025 8:45	5 days	3/3/2025			
			SW8081B (OC Pesticides)						5 days	3/3/2025			
006A	TP-3 @ 4'	Soil	SW6020 (Metals) <arsenic></arsenic>	1	Plastic Baggie, Medium			2/12/2025 9:00	5 days	3/3/2025			
			SW8081B (OC Pesticides)						5 days	3/3/2025			
008A	TP-4 @ 4'	Soil	SW6020 (Metals) <arsenic></arsenic>	1	Plastic Baggie, Medium			2/12/2025 9:14	5 days	3/3/2025			
			SW8081B (OC Pesticides)						5 days	3/3/2025			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 1

						,															
McCAMPBELL ANALYTICAL, INC.					CHAIN OF CUSTODY RECORD																
1534 V	Villow Pass	Rd. Pittsburg	urg, Ca. 94565-1701			Turn Around Time: 1 Day Rush			2 Day Rush		3 Day	Day Rush		STD • Quot		ote #					
Telepho	one: (877) 2	52-9262 / Fa	ax: (92:	5) 252-9269		J-Flag	/ MDL	-	ESL		Cleanup	Approved		Dry We	ight	F	Bottle	Orde	r#		
www.mccample	ell.com	ma	in@m	ccampbell.	com	Deliv	ery Fo	rmat:	PDF		GeoTracker E	DF	EDD		Write	On (I	DW)		Detect	Sumn	ary
Report To: James Robinson		Bill To:	James	Robinson								Analys	is Re	queste	d						
Company: Enviro Assessment, PC	ompany: Enviro Assessment, PC																				
Email: james@enviroassessment.com (N																					
Alt Email: Service@enviroassessment.co	m	Tele:		844-742-7	311				ES							- 1					
Project Name: Madera Drive Property Project #: 2024-12-014																					
Project Location: Cupertino, CA		PO#						1	Z												
Sampler Signature: Sau Ave							0														
SAMPLE ID	Sam	pling	#Containers Matrix		Preservative	101	Arsenic		HOLD												
Location / Field Point	Date	Time		Matrix			rse		호								- 1				
TP 4 0 04	2/-2/15	-	-			0	-	-		-			-			+	+	_	\dashv	-	_
TP-1 @ 3'	5/15/52	0919	1	Soil	ice .	•	9	B				_	-	\vdash	-	+	+	-	+	+	+
TP-1 @ 4'	1		1	Soil	ice	1	X	+	•				-	\vdash	-	+	\dashv		\dashv	+	_
TP-2 @ 3'	3/13/22	0840	1	Soil	ice			_								4	_	_	\perp	\perp	\bot
TP-2 @ 4'	2/12/25	0845	1	Soil	ice	X	X		•							\perp	_		_	_	
TP-3 @ 3'	2/12/25	0855	1	Soil	ice		0									\perp	_				
TP-3 @ 4'	2/12/25	0900	1	Soil	ice	X	X		0												
TP-4 @ 3'	2/12/25	0910	1	Soil	ice	0	0														
TP-4 @ 4'	2/13/25	0914	1	Soil	ice	X	X		0												
TP-3 @ 3' DUP	3/13/25	0855	1	Soil	ice		0														
No.																\perp					
MAI clients MUST disclose any dangerous chemica Non-disclosure incurs an immediate \$250 surcharge				The state of the s									ent as a	result of l	brief, glo	oved, c	open aii	r, sampl	e handli	ng by M	AAI staff.
* If metals are requested for water samples and												ik saiciy.					Cor	nments	/ Instr	uctions	
Please provide an adequate volume of sample.								_							\dashv_{L}	JO.	ESL		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i ciron	0.
Relinquished By / Compan	-	***************************************	D	-	ime		SECTION STREET, SA	ACCRECATION AND ADDRESS.	y / Con	OR OTHER DESIGNATION	NOT THE OWNER OF THE OWNER, WHEN	7 0	ate	Tim	e	1	I.	1 1	211	10 (71
Sleven Ashe / Enviro Assessmen	of Pc		2/12	125 ///	-3	_	7		1/1		1)16	U	2/2	- (11	3 A	tal	NIC	1 4	24/	ا (ا	TAT.
					0	_			/)										
Matrix Code: DW=Drinking Water, C	GW=Groun	d Water, W	W=W	aste Water	, SW=Seaw	vater,	S=Sc	oil, SI	=Slu	lge,	A=Air, WP=	Wipe, C	=Oth	er							/
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	4=HNO ₃	5=Na	OH 6=Z	nOAc/NaOl	H 7	=Nor	ne						Te	mp_	30	1	°C 1	Initia	ls _	70
																1	/Z 3	0			of I
																			Pag	ge_I	_ of _ !

HEALTH & SAFETY PLAN

MADERA DRIVE PROPERTY 10621 MADERA DRIVE CUPERTINO, CA 95014

Project Number 2025-01-004

This document was prepared for use only by the client, only for the purposes stated, and within a reasonable time from issuance. Non-commercial, educational, and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. The reprint must acknowledge the copyright and indicate that permission to reprint has been received.

Ben Engelman 11652 Bridge Park Ct., Cupertino, CA 95014 (408) 891-8396 Larome.ben@gmail.com

Subject: Phase II Environmental Site Assessment for

Madera Drive Property 10621 Madera Drive Cupertino, CA 95014 APN(s): 32535061

INTRODUCTION

GENERAL SAFETY PROCEDURES

Employees engaged in potentially hazardous operations must be familiar with safety practices that pertain specifically to those tasks. The following safety practices should be adhered to by project personnel.

The occurrence of any injury may indicate employee negligence or some fault or inadequacy in the design, equipment, procedure, or employee training. If injuries are to be prevented, Enviro Assessment PC, must exert leadership in safety, as well as in all other phases of work. It is the responsibility of the employee to immediately report any injury, including minor injuries, to his supervisor. Following this report, the supervisor and the site safety officer should investigate the cause of the accident and take action to prevent its reoccurrence.

The risks of accidents are much the same at any project site. These hazards can be classified as:

- Physical injuries;
- Body infections;
- Explosive or noxious gases or vapors, and oxygen deficiency;
- And contact or inhalation of hazardous chemicals.

Once recognized, these hazards can be readily corrected or at least guarded against by proper training, warnings, safety procedures, and personal protective equipment.

An effective health and safety program starts with management and involves all personnel. An effective program should include the following to ensure the necessary safety of the operating personnel:

- 1. Emergency Procedures
 - a. What to do and what not to do for the injured.
 - b. Emergency responders must be contacted.
 - c. The injured personnel must be identified and relatives notified.
 - d. Emergency vehicles upon reaching the site must be directed to the accident scene.

- e. Further damage to personnel and property must be prevented.
- f. All interested persons and authorities must be notified after the emergency.

Note: These procedures should be posted throughout the project site in prominent areas.

- 2. Safety Drills and Training Sessions Personnel should be drilled frequently on how to react to various emergencies, including evacuation of the facility if necessary. All project personnel should be trained on the use of each piece of safety equipment. Do not wait for an emergency before attempting to use the equipment.
- 3. Safety Meetings meetings will be held monthly, or more often, depending on the potential hazards. Meetings should be documented with the subject material and the names of those in attendance. All operating personnel should be encouraged to attend. Films on safe driving, slips and falls, dangerous gases, fire, danger, etc. are helpful tools.
- 4, Safety Program Records the following records may be helpful to identify the causes of accidents and attendees, and date to develop corrective measures.
 - a. Accident investigation report forms
 - b. Health and safety plan
 - c. Safety rules

The health and safety program will be reviewed at least annually to ensure adequate safety procedures are maintained and up to date practices are used.

CORPORATE SAFETY PHILOSOPHY/MISSION

Enviro Assessment PC recognizes all employees as having value in a dynamic and growing organization. Part of that value is the ability to recognize the constant need to insure not only the individual well being of the employee, but the collective safety and well being of all of their fellow employees. The primary philosophy behind our health and safety policy is "failure is not an option". This philosophy carried to all levels within the corporate structure and is intended to imbue staff and management with a constant awareness of the perils of our profession, and in a sense the responsibility to mitigate risk of injury or health threat at every opportunity without regard to cost or consequence.

1.0 STANDARD OPERATING PROCEDURES FOR SITE HEALTH AND SAFETY

1.1 INTRODUCTION

This section of the plan shall provide the user with guidelines for selected health and safety procedures. Although every task on or off-site is important to the health and safety of employees, the goal of this SOP should be to provide procedures related to site work, site entry, and site control.

To prevent employee injuries and minimize adverse health effects related to specific work hazards, the following general safe work practices are mandated when work involves known or unknown hazards. The general safe work practices should establish a pattern of general precautionary measures for reducing the risks associated with field work.

1.2 GENERAL SAFETY PROCEDURES

1.2.1 Pre-Project Site Visit

The nature and extent of the hazard potential must be evaluated prior to entering a potentially hazardous work site. Part of this evaluation includes a determination of the level of protection appropriate to the task. The following is a suggested decision logic to be used prior to site entry:

- Review site history and Phase I and II Environmental Site Assessments (if available).
- Review site operations,
- Review potential hazards,
- Review site geography,
- Review all toxicity information for all possible contaminants, and
- Choose appropriate personal protective equipment based on the above information.

Level A Protection: Must be worn when it had been determined that the highest level of respiratory, skin and eye protection is necessary.

Level B Protection: Must be worn when it has been determined that the maximum level of respiratory protection is necessary.

Level C Protection: Must be worn when the contaminants are known, the required level of respiratory protection is no greater than an air-purifying respirator and the protection afforded by disposable Tyvek coveralls and inert gloves.

Level D Protection: Consists of basic work clothing, and no respiratory protection.

1.2.2 Personal Hygiene Practices

Eating, drinking, smoking, chewing gum or tobacco is prohibited in any contaminated or potentially contaminated area of the site.

Employees are required to wash all exposed skin areas when exiting any contaminated area. Clothing, if contaminated, should be removed prior to leaving the area and should never be worn away from the site. Contact with any contaminated surface should be avoided.

1.2.3 Personal Protective Equipment and Practices

The proper selection and use of personal protective equipment is essential to worker safety and health. Personal protective equipment should be selected based on the type of hazard and the actual work situations along with the potential for worker exposure. The following is a partial list of the types of personal protective equipment, which may be necessary.

- Positive pressure respirators self-contained and airline powered, air-purifying respirators.
- Negative pressure, air-purifying respirators
- Protective or chemical-resistant clothing
- Chemical-resistant gloves
- Safety eye wear, face shields, hard hats
- Safety shoes

Employees should familiarize themselves with the goals and objectives of the health and safety program. A site representative should be appointed by management with to coordinate all safety and health related activities for the site. This representative will arrange for any emergency intervention, if necessary.

A descriptive map to the nearest medical facility should be included in the HASP and the safety representative should ensure its posting throughout the site. The map should include not only directions, but also phone numbers of the hospital, designated Emergency Response Agency, physician and transportation.

All accidents are to be reported to the site safety representative and the Corporate Health and Safety Officer.

1.2.4 On-Site Operations Practices

This section outlines the responsibilities of personnel as appropriate. At a minimum, it will include responsibilities of all health and safety-related personnel

Project Manager

The Project Manager has full responsibility for executing and administering the company's health and safety program. Any case in the planning and execution of the program where an interface of responsibility exists, each Project Manager involved has the responsibility to see that proper and effective action is taken. Any health and safety matter which cannot be resolved by the Project Manager will be referred to the Site Safety Representative and/or the Corporate Manager of Health and Safety.

The project manager will be responsible for:

- Displaying leadership in all activities for their projects and ensuring regulatory compliance by subordinates/team members.
- Coordinating with the Site Safety Representative and Corporate Manager of Health and Safety on matters relating to all work site activities, on-going and/or planned, to ensure adequate consideration is given to maximum employee health and safety protection and compliance with all applicable local, state and federal regulations.
- Ensuring that corrective action is accomplished with regards to recommendations resulting from deficiencies identified by audit and observation.
- Ensuring that a positive attitude exists with respect to all employees towards the accomplishment of a safe and healthful work environment.

Health and Safety Representative Responsibilities

The Health and Safety Representative has direct responsibility for the implementation and enforcement of the health and safety program. At a minimum, the Health and Safety Representative will be responsible for:

- Enforcing all health and safety rules and regulations within the scope of the Site Specific Health and Safety Plan (HASP).
- Conducting and documenting Health and Safety audits.
- Initiating corrective action in cases of unsafe conditions, which exist at the facility.
- Coordinating with the Corporate Health and Safety Manager on matters pertaining to health and safety at the plant level.
- Evaluating plant operations to detect and correct unsafe acts and unsafe conditions.
- Educating all employees as to applicable work practices, procedures, rules and regulations.
- Educating all employees on applicable emergency contingency plans.
- Reporting all accidents, injuries and near misses to the Corporate Health and Safety Manager.
- Enforcing all aspects of the Site Specific Health and Safety Plan.

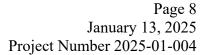
Employee's Responsibilities

The employee is responsible for his or her own safety, and the safety of his fellow workers.

At a minimum, employees will:

- Comply with rules, regulations, policies and procedures, as well as all applicable federal, state and local health and safety rules and regulations.
- Follow proper procedures as outlined by immediate supervisors.
- Properly utilize personal protective equipment as required by company policy.
- Report all accidents and injuries without delay to the immediate supervisor or to the Health and Safety Representative.

1.2.5 Health and Safety Training Program


All employees are required to participate in routine health and safety education and training programs. These programs will be managed by the Corporate Manager of Health and Safety, and are designed to provide employees with a thorough knowledge of hazardous materials, health and safety hazard potentials, compliance with local, state and federal regulations. In the case of hazardous materials handling, all education programs will be designed to comply with 29 CFR 1910.120, (Hazardous Waste Operations and Emergency Response). Safety training required by this regulation will occur at a minimum on an annual basis; however, specific training may be required more frequently as required by the Corporate Health and Safety Manager.

Employees are required to demonstrate a good knowledge of safety procedures and confidence to carry them out prior to embarking on any project. Safety meetings will be held on a minimum of a monthly basis; however, when required by a particular job more frequent safety meetings will be held.

It will be required that all education and training sessions be documented as to the attendees, length of training, and an outline of training topics. Each employee in attendance will affix his signature to a safety log or sign-in sheet for documentation.

2.0 HEALTH AND SAFETY ORGANIZATION

All site personnel shall be trained to obtain an appropriate health and safety standards for each project undertaken. Each facility will have a designated Health and Safety Representative. The representative is responsible for site health and safety. The Health and Safety representative will review and approve Site Specific Health and Safety Plans, as well as review the certification of each employee at their facility. The Health and Safety Representative should act as liaison to the Corporate Manager of Health and Safety, who will report directly to the President or Chief Executive Officer.

The Health and Safety Representative at each site will play a pivotal role in the administrative and maintenance of goals and objectives of the Site Specific Health and Safety Plan. The overall goal of the HASP is to provide for the health and safety of each employee and achievement of a work environment with minimal health and safety risks. The Health and Safety Representative will achieve these goals in the following manner:

- Displaying leadership in a positive attitude in all activities associated with overall project responsibilities and ensuring that all employees comply with the goals and objectives of the Corporate Health and Safety Program.
- Coordinating and communicating with the Corporate Manager of Health and Safety on matters relating to work site activities, existing and/or planned, to ensure that adequate consideration is given to maximize employee health and safety protection.
- Ensuring compliance with all applicable local, state and federal regulations.
- Ensuring that positive corrective action is taken when recommendation resulting from deficiencies identified by safety inspections, general observation, and process hazards analyses are identified.
- Ensuring that a positive attitude exists between all employees and toward the achievement of a work environment that provides maximum employee health and safety protection.

3.0 HEALTH AND SAFETY TRAINING PROGRAM

3.1 INTRODUCTION

All employees are to participate in a health and safety training program designed to comply with local, state and federal regulations in respect to initial, refresher and supervisory training requirements. Compliance with these requirements is assured with a record-keeping program to be maintained at the corporate level with hard copies available at each site. Programs shall be designed to periodically train, and to supplement previous training, throughout the course of the year. Programs should be designed ideally by the Manager of Corporate Health and Safety, who will oversee the training. Site Safety Representatives will be responsible for health and safety training at their facilities.

3.2 TRAINING PROGRAMS

Employees should not begin fieldwork until they are appropriately trained. Training programs in the following areas should be developed as part of the site health and safety plan:

- Site safety plan
- Safe work practices
- Nature of potential hazards
- Emergency response
- Safe use of vehicles
- Safe handling, storage, transport of hazardous materials
- Employee rights and responsibilities
- Use of personal protective equipment
- Safe sampling procedures

Depending on job classification, the following training programs may be appropriate for select Personnel.

- Site surveillance
- Site safety plan development
- Equipment/personnel decontamination
- Analytical instrumentation use
- Safe use of specialized equipment
- Waste cleanup/management
- Management of site cleanup
- Communication with press and community

4.0 MEDICAL SURVEILLANCE PROGRAM

4.1 INTRODUCTION

Medical surveillance is a major component of the health and safety program. It was established to monitor and promote the health of employees.

The use of recognized safety procedures and personal protective equipment minimizes these associated risks. In the event of a potentially harmful exposure, early detection of symptoms is extremely important. Thus, the medical surveillance procedures prescribed as part of this health and safety program must be followed by all personnel without exception.

Medical surveillance provides a clinical base of information that is used to evaluate an employee's fitness to work. It is used to identify anomalies in a person's medical history that may be related to potential impaired health, and to evaluate a person's capacity to use respiratory protection equipment. This base of medical information includes personal history, exposure history, physical examination results, laboratory analysis, and the results of screening and special tests. The baseline medical examinations include:

- Past medical history on entry to the program, information concerning past occupational exposures and personal, as well as family history of disease;
- Present medical profile all pertinent medical information regarding present state of health;
- Exposure history;
- Laboratory analyses hematology, chemistry screen, liver and kidney function tests, and urinalysis;
- Audiometric test;
- Vision test;
- Pulmonary function test;
- Electrocardiogram;
- X-ray;
- Physical examination;
- Special tests medical information concerning the effects of exposure to specific contaminants.

TABLE 4.1 SUGGESTED MEDICAL EXAMINATION PROTOCOL

	r	Testing Frequ	ency					
Test	Baseline and Exit	Intermittent	Other	Remark				
1. Review of medical history	X	X						
2. General physical	X	X						
3. Pulmonary function exam	X	X						
4. Electrocardiogram	X		X	Every 5 years for age less than 40. Every year for age over 40.				
5. Stress Test			X	As recommended by Physician. Especially if abnormal EKG, history of angina, myocardial infarction or cardiac surgery.				
6. Chest X-ray	X		X	Every 3 years for age less than 40. Every 2 years for age less than 56. Every year for age over 56.				
7. Otoscopic Exam	X	X						
8. Audiometric Exam	X		X	Annually if warranted. Every year for operators, utility workers and mainte- nance personnel, treatment personnel.				
9. Vision Test	X	X						
10. 20-channel blood profile	X	X						
11. CBC Count	X	X						
12. Serum Cholinesterase	X	X						
13. Met hemoglobin	X	X						
14. Serum lead	X	X						
15. Urinalysis	X	X						
16. Urine heavy metals	X	X		Arsenic, cadmium, chromium, mercury				

4.2 OBJECTIVES

The objectives of the medical surveillance component of the health and safety program are:

- Monitor health of employees;
- Pre-assignment screening of employee's health to determine present status and to identify existing problems that may be aggravated by chemical exposures or physical stress:
- Monitor employee health for early signs of work-related illness and employee suitability for further assignments;
- Evaluate and diagnose individuals with work-related illnesses or injuries;
- Satisfy the requirements of OSHA Part 1910.134 regarding respiratory protection.

4.3 MEDICAL EXAMINATIONS

The following are general guidelines for the medical examination aspect of the HASP. If on-site medical personnel are not available, a qualified occupational health physician should be contacted.

4.3.1 Initial Baseline Examination

All applicable employees shall be given a baseline examination prior to beginning employment. The purpose of the baseline examination is pre-assignment screening and establishing baseline medical information.

4.3.2 Periodic Examinations

All personnel who have taken the initial baseline examination and have received clearance by the examining and/or reviewing physician to participate in field or laboratory activities shall be re-examined at least once every two years, unless the attending physician recommends a longer interval. The date of each annual examination should fall on, or as closely as possible done are listed in Table 4.1.

4.3.3 Exit Examination

An exit examination shall be given to all employees upon terminating employment with Enviro Assessment PC In the event that an employee has had a full physical within the previous six months, the employee may decline an examination. An employee must complete and sign the Waiver of Exit Examination form if he or she declines to take the exit exam.

4.3.4 Special Testing

Special testing may be required for employees to be assigned to certain projects due to the potential for exposure to specific substances. Special testing may also be necessary where the potential for heat or cold stress exists. The need for special testing will be assessed on project-by-project basis.

4.3.5 Examination Protocols

The protocols presented in Table 4-1 apply to baseline, and exit examinations. A detailed health/work history questionnaire must be completed by each employee before baseline, periodic, and annual examinations. The protocols may be modified by the reviewing or examining physician after consultation with Enviro Assessment PC.

4.3.6 Physician's Reports

Examining physicians will use: information provided by the employee in the questionnaire, the examination results, and the results of laboratory tests to determine if any work restrictions or occupational health problems appear to be present. The examining physician will provide the results of the examination to the Manager of Health and Safety. A physicians report on the examination will be sent directly to the employee with a separate letter stating ability to work with hazardous substances.

Non work-related health issues may arise during the course of the medical evaluation. The examining or reviewing physician may recommend the employee see their family doctor or a specialist. Such information may be included in a written report to the employee; however, any non work-related issues should not be included in the report to the employer.

Employer reports shall be reviewed by management and stored in the employee's files. Physician recommendations regarding limitations will be followed.

4.4 REVIEWING PHYSICIAN

The reviewing physician receives copies of all medical questionnaires, examinations, and laboratory testing results, and determines an employee's access of work. The physician also provides advice and assistance regarding site-specific medical monitoring needs and programs.

4.5 CONFIDENTIALITY

Employee medical records are maintained only for the examining physicians and reviewing physician. The information contained in the Enviro Assessment PC, medical surveillance files is confidential and available for review only by the examining and/or reviewing physicians and their medical personnel, company management and Health and Safety officer.

The request will give both full name and address of the representative and indicate the records to be released. Medical information about an employee will not be made available to the public without written authorization from the individual concerned.

The written opinion of the reviewing physician provided in the report to the employer shall not reveal specific diagnoses for findings unrelated to occupational exposure.

4.6 FINANCIAL RESPONSIBILITY

The costs of baseline, annual, special, and exit examinations will be paid to the examining physician by the company. The costs of examinations and tests that the employee voluntarily takes on recommendations by the examining or reviewing physician shall be borne by the employee unless the examinations/tests are to diagnose a work-related illness.

WAIVER OF EXIT EXAMINATION

I,	, waive my righ	t for an exit examination.
This examination was offered to n	ne by	and was to be paid for
by	·	offered to provide the
results of this medical examinatio	n to me according to the requirements	s of the medical monitoring
program		
Witness	Signature Signature	Date

5.0 INJURY/ILLNESS INVESTIGATION AND REPORTING

5.1 INTRODUCTION

The proper and efficient reporting and investigating of injuries/illness is essential to ensure that each employee receives timely medical care and that steps are taken to minimize and/or eliminate accidents.

5.2 DEFINITION OF INJURY/ILLNESS

A site-specific definition may be appropriate, however, a more general definition follows: Occupational injury is bodily harm or damage resulting from a work activity or from an exposure involving an incident in a work environment including, but not limited to lacerations, burns, sprains and/or strains, fractures, contusions, etc.

Occupation illness is a malady, including any abnormal condition or disorder other than one resulting from occupation injury, which is caused by exposure to environmental factors associated with ones employment, regardless of time between exposure and effect.

5.3 REPORTING AND PROCEDURES

An injury/illness report form should be developed. The form shall be completed for all accidents, including all company employees and subcontractor employees. In the event of an accident to the subcontractor employee, the form and investigation is to be prepared and performed by the subcontractor.

The injury/illness report form will serve as the basis for the written reporting and investigating of all accidents resulting in employees receiving more than non-intrusive first aid.

All such accidents are to be verbally communicated to the Health and Safety Representative or Site Manager as soon as medical services are secured. These individuals will verbally notify the Manager of Corporate Health and Safety within 24 hours of the accident. Necessary medical services and employee care shall be secured prior to the initiation of reporting the incident and the investigation process.

The investigation should be thoroughly performed at a minimum by the injured employee's immediate supervisor. The results of the investigation are to be documented using the report form with the form being signed by the investigator. The form is then forwarded to the appropriate management staff, who following a review, are required to sign and date the form before forwarding to the Safety Representative. Following the Safety Representative's review and signature a copy of the form is to be made for the project file, with the original forwarded to the Manager of Corporate Health and Safety.

5.4 FOLLOW-UP PROCEDURES

If the injury or illness resulted from the uncontrolled release of hazardous material, the Corporate Manager of Health and Safety must be notified immediately so that discussions with the appropriate occupational physician can occur to determine if additional biological monitoring should be prescribed.

As soon as is practical following an initial medical evaluation and treatment, the injured employee is to be scheduled into a health facility for medical evaluation. Placing the employee into a medical facility is necessary to ensure that the employee receives quality medical treatment during any type of recovery period. This does not apply to subcontractor or contractor employees.

5.4 RETURN TO WORK

Appropriate medical evaluation must be made prior to determination of an employee's ability to return to work. This evaluation will vary according to the illness and/or injury incurred by the employee.

6.0 SELECTION AND USE OF RESPIRATORY PROTECTION 'EQUIPMENT

This section is not in use for this project at this time.

7.0 HAZARD COMMUNICATION PROGRAM

7.1 INTRODUCTION

The program must conform to the requirements of the Federal OSHA standard 1910.1200. It ensures that information necessary for the safe use, handling and storage of hazardous chemicals is provided to and made available to all employees.

The program must include guidelines on identification of chemical hazards and the preparation and proper use of container labels, placards and other types of warning devices.

The following are recommended topics to be addressed in the written program.

7.2 CHEMICAL INVENTORY

- 1. An inventory of all known chemicals in use on the work site must be maintained. A chemical inventory list must be posted.
- 2. Hazardous chemicals brought onto the work site by employees or contractors and suppliers must be promptly included on the hazardous chemical inventory list.
- 3. All contractors and subcontractors will be required to provide a list of all chemicals they intend to use while on the site.

7.3 CONTAINER LABELING

- 1. All chemicals on site should be stored in their original containers with a proper label attached, except small quantities for immediate use. Any container not properly labeled should be given to the department or job supervisor for labeling or proper disposal.
- 2. Workers may dispense chemicals from original containers only in small quantities intended for immediate use. Any chemical left after work is completed must be returned to the original container or department supervisor for proper handling.
- 3. No unmarked containers of any size are to be left in the work area unattended.
- 4. Employees should rely on manufacturer applied labels whenever possible, and will ensure that these labels are maintained in a clean and legible manner. Containers that are not labeled or on which the manufacturer's label has been removed and will be relabeled.
- 5. Employees will ensure that each container is labeled with the identity of the hazardous chemical contained by any appropriate hazard warnings.
- 6. All subcontractors shall be advised of and required to comply with these procedures.

7.4 MATERIAL SAFETY DATA SHEETS (MSDS)

- Employees working with a hazardous chemical may request a copy of the material safety data sheet (MSDS). Requests for MSDSs should be made to the work supervisor, superintendent or Health and Safety Representative.
- MSDSs will be made available and standard chemical references may also be available on the site to provide immediate reference to chemical safety information.
- The same information will be available to all contractors, subcontractors, consultants, and/or suppliers working on site.

7.5 EMPLOYEE TRAINING

All employees will be trained to work safely with hazardous chemicals. Employee training will include:

- Methods that may be used to detect a release of hazardous chemicals in the workplace;
- Physical and health hazards associated with chemicals;
- Protective measure to be taken:
- Safe work practices, emergency responses and use of personnel protective equipment;
- Information on the Hazard Communication Standard including labeling and warning systems and an explanation of Material Safety Data Sheets; and
- Location of Hazard Communication Plan in workplace.

7.6 PERSONAL PROTECTIVE EQUIPMENT (PPE)

Required PPE will be provided to each employee in accordance with the job standard operating procedures. Any employee found in violation of PPE requirements may be subject to disciplinary actions up to and including discharge.

Personal protective equipment may only be upgraded or downgraded by the Health and Safety Officer and/or Safety Supervisor, based upon conditions and air monitoring results. The following is a description of required personal protective equipment by level of protection.

LEVEL A – Self contained breathing apparatus (SCBA) or supplied air respirator (SAR) with escape SCBA; totally encapsulating suit; chemical-resistant boots and gloves; intrinsically safe two-way radio communications.

LEVEL B – SCBA or SAR with escape SCBA, chemical resistant suit, boots, gloves.

LEVEL C – Air purifying respirator (half or full face); chemical resistant suit, boots, gloves.

LEVEL D – Coveralls, chemical resistant boots, safety glasses. *This is the recommended equipment for this project at this time.*

7.7 EMERGENCY RESPONSE

- All emergency response activities should be governed by a written plan.
- Any incident of adverse or spill of a hazardous chemical must be reported to the immediate supervisor at once.
- The supervisor will be responsible for ensuring that proper response actions are taken in leak/spill or exposure situations in accordance with the approved Plan. The supervisor must report the incident to the Health and Safety officer immediately.

7.8 HAZARDS OF NON-ROUTINE TASKS

- Supervisors will inform employees of any special tasks that may arise which would involve possible exposure to hazardous chemicals.
- Review of safety work procedures and use of required PPE will be conducted prior to the start of such tasks. Where necessary, areas will be posted to indicate the nature of the hazard involved.

7.9 INFORMING CONSULTANTS, CONTRACTORS, SUPPLIERS

- All contractors, consultants and suppliers are required to adhere to the provisions of the Hazard Communication Program;
- Information on hazardous chemicals known to be present will be exchanged with other contractors. All contractors, consultants and suppliers will be responsible for providing necessary information to their employees.
- All contractors, consultants and suppliers will be provided with a copy of the hazard communications program and PPC plan.

8.0 HEAT STRESS

This section is not in use for this project at this time.

9.0 COLD STRESS

9.1 PURPOSE

The purpose of this operating procedures is to provide information on cold stress and procedures for preventing and dealing with cold stress. Adverse climatic conditions of cold are important considerations in planning and conducting site operations. Ambient temperature effects can include physical discomfort, reduced efficiency, personal injury, and increased accident probability.

9.2 TYPES OF COLD STRESS

Persons working outdoors in low temperatures, especially at or below freezing are subject to cold stress. Exposure in extreme cold for a short time can cause severe injury to the surface of the body, or result in profound generalized cooling, causing death. Areas of the body which have high surface area to volume such as fingers, toes, and ears, are the most susceptible.

Protective clothing generally does not afford protection against cold stress. In many instances, it increases susceptibility.

Two factors influence the development of a cold injury, ambient temperature and the velocity of the wind. Wind chill is used to described the chilling effect of moving air in the combination with low temperature.

As a general rule, the greatest incremental increase in wind chill occurs when a wind at 5 mph increases to 10 mph. Additionally, water conducts heat 240 times faster than air. Thus, the body cools suddenly when chemical-protective equipment is removed if the clothing underneath is perspiration soaked.

9.3 FROSTBITE

Local injury resulting from cold is included in the generic term frostbite. Frostbite of the extremities can be categorized into:

Frost nip or incipient frostbite is characterized by sudden blanching or whitening of the skin.

Superficial frostbite is characterized by skin with a waxy or white appearance and is firm to the touch, but tissue beneath is resilient.

Deep frostbite is characterized by issues that are cold, pale, and solid.

To administer first aid for frostbite; Take the victim indoors and warm the areas quickly in water that is between 30-41°C (102-105°F). Give a warm drink – not coffee, tea or alcohol. The victim

must not smoke. Keep the frozen parts in warm water or covered with warm clothes for 30 minutes, even though the tissue is very painful as it thaws. Then elevate the injured area and protect it from injury. Do not allow blisters to be broken. Use sterile, soft, dry material to cover injured areas. Keep victim warm and get immediate medical care.

Measure the air temperature with standard thermometer. Estimate fraction of sunshine by judging what percent the sun is out: 100% sunshine = no cloud cover = 1.0; 50% cloud cover = 0.5; sunshine = full cloud cover = 0.0.

Reduce or increase the work cycle according to the guidelines under heart rate.

After thawing, the victim should try and move the injured areas a little, but no more than can be done alone, without help.

Note:

- Do not rub the frostbitten part (this may cause gangrene).
- Do not use ice, snow, gasoline or anything cold on the frostbitten area.
- Do not use beat lamps or hot water bottles to re-warm the part.
- Do not place the part near a hot stove or heater.

9.4 HYPOTHERMIA

Systemic Hypothermia is caused by exposure to freezing or rapidly dropping temperature. Its symptoms are usually exhibited in five stages:

- 1) Shivering
- 2) Apathy, listlessness, sleepiness, and (sometimes) rapid cooling of the body to less than 95°F
- 3) Unconsciousness, glassy stare, slow pulse, and slow respiratory rate.
- 4) Freezing of the extremities.
- 5) Death.

9.5 COLD STRESS MANAGEMENT

As a general rule, field activities shall be limited if equivalent chill temperature (CF) as defined in Exhibit 1 is below zero (0°F). Exhibit 2 shall be used as a guideline for site activity schedules.

Proper training and preventative measures will help avert serious illness and loss of productivity due to cold stress. Prevention is important because once someone suffers from cold stress, that person may be predisposed to additional injury. To avoid cold stress, management should:

- Adjust work schedule
- Provide shelter
- Maintain workers health
- Encourage workers to maintain fitness
- Provide adequate training

10.0 CONFINED SPACE ENTRY

This section is not in use for this project at this time.

10.1 PURPOSE

The purpose of this operation procedure is to provide employers, and employees working in confined spaces, with a process for evaluating the potential hazards, taking steps to control those hazards, and maintaining compliance with the Permit-Required Confined Space regulation presented in 29 CFR 1910.146.

10.2 DEFINITION OF CONFINED SPACE AND PERMIT-REQUIRED CONFINED SPACE.

Confined space means a space that:

- 1) Is large enough and so configured that an employee can bodily enter and perform assigned work:
- 2) Has limited or restricted means for entry or exit (for example, tanks, vessels, silos, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry); and
- 3) Is not designed for continuous employee occupancy.

Permit-required confined space (permit space) means a confined space that has one or more of the following characteristics:

- 1) Contains or has the potential to contain a hazardous atmosphere;
- 2) Contains a material that has the potential for engulfing an entrant;
- Has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly converging walls or by a floor which slopes downward and tapers to a smaller crosssection; or
- 4) Contains any other recognized serious safety or health hazard.

If the space can be maintained in a condition safe to be entered by continuous forced air ventilation, may choose to enter the space under guidelines presented in 29 CFR 1910.146 (c) (5) which include:

- Can demonstrate that the only hazard posed by the permit space is an actual or potential hazardous atmosphere, which can be controlled by continuous air ventilation for safe entry into the space.
- Before employee enters the space, the internal atmosphere shall be tested with a calibrated direct-reading instrument for the following conditions in the order given:
 - 1) Oxygen content
 - 2) Flammable gases and vapors, and
 - 3) Potential toxic air contaminants, which may exist or arise in the space.
- The atmosphere within the space shall be periodically tested as necessary to ensure that the continuous forced air ventilation is preventing the accumulation of a hazardous atmosphere.

- The Confined space expert will verify that the space is safe for entry through a written certification that contains the date, the location of the space, and the signature of the person providing the certification.
- If the atmospheric hazards cannot be eliminated through continuous forced air ventilation and/or hazards are present, then the space is a permit-required confined space.

10.3 CLASSIFICATION OF NON-PERMIT AND PERMIT-REQUIRED CONFINED SPACES

All confined spaces must be approached with the understanding that they are dangerous. Until information is provided or data generated to prove otherwise, any employee is to assume that the confined space is of the highest hazard potential. A confined space classification checklist for use in the field is included in Attachment 2.

With the criteria for approaching the confined space now established, the next step is to actually determine the hazards that are present so that the work space can be properly classified. The classification is based on airborne hazards, moving mechanical devices, and potential for engulfment; however, electrical equipment and inlet/outlet piping must also be considered as they can be a serious safety and health hazard. The first step towards classification is determining whether the space is a permit required confined space or a non-permit required confined space.

Inspection of site conditions, testing of the atmosphere within the space, and application of the decision flow chart provided in Appendix A of 29 CFR 1910.146 aids in the classification process.

The following three questions are key to determining the classification of a confined space:

- 1) Does the space have known or potential hazards?
- 2) Can the hazards be eliminated?
- 3) Can the space be maintained in a condition safe to enter by continuous forced air ventilation only?

If the hazards can be eliminated, may choose to classify the space to a non-permit required confined space by following 1910.146 (c) (7) which state:

- If the permit space poses no actual or potential atmospheric hazards into the space are eliminated without entry into the space, the confined space may be classified as a non-permit space for as long as the non-atmospheric hazards remain eliminated.
- If it is necessary to enter the space to eliminate the hazards, such entry shall be performed under permit-required confined space entry guidelines, which include testing and inspection.

- The Confined space expert shall document the basis for determining that all hazards in a permit space have been eliminated, through a certification that contains the date, the location of the space, and the signature of the person making the determination.
- If hazards arise, each employee in the space shall exit the space. The Confined space expert shall then reevaluate the space.

11.0 SITE-SPECIFIC HEALTH AND SAFETY PLAN

11,1 INTRODUCTION

A Site-Specific Health and Safety Plan will be generated for any intrusive work activities performed which involve hazardous materials. The health and safety plan will serve as a vehicle for providing Site-Specific Health and Safety information to employees assigned to specific tasks. It will be available on site and will be reviewed by all employees prior to beginning work. Documentation that employees have reviewed health and safety plan will also be available on site. The health and safety plan will be prepared at a minimum in accordance with the required elements of OSHA 29 CFR 1910.120.

11.2 HEALTH AND SAFETY PLAN ELEMENTS

The Site-Specific Health and Safety Plan will address the following:

- Names of key personnel and alternates responsible for development, implementation, and maintenance of the health and safety plan. This section will describe personnel and the lines of communication to be followed in performance of the project.
 - Manager for Site Operations shall be: James Robinson of Enviro Assessment PC. Company owner and Project Geologist: James Robinson.
- A risk analysis will be described for each anticipated task and/or operation. This will include a discussion of the suspected hazardous materials, other health and safety hazard potential, etc. Also included in this section is the discussion concerning the types of equipment and physical hazards associated with the operation of such equipment, which will be required for the job.
 - This Project includes the Hand Augering of numerous boring to sample for possible contamination from a variety of contaminants including OCPs and metals.
- Site-Specific Health and Safety training shall be provided to all employees participating in any project work. The training will include at a minimum the elements of the health and safety plan.
- Protective equipment requirements will be specific for each anticipated task. The equipment will be prescribed based on suspected hazardous materials being used on-site in the activities associated with the use of these materials.
 - No airborne hazards are anticipated at this time. Care should be taken when handling groundwater and soil samples as contamination is not known at this time.
- Medical surveillance requirements, when different from the health and safety plan requirements, will be specified by the Site-Specific Plan. Additional medical surveillance will be prescribed by an occupational physician who shall oversee the medical surveillance program.

No additional medical surveillance is recommended.

- The types and frequencies of personal and area air monitoring will be defined by an industrial hygienist or equivalent based on materials anticipated on-site and tasks. Specifies as to the type of monitoring equipment, sampling and analytical methodologies and sampling equipment operation, calve ration and maintenance shall be provided in this section.

 Non-required or anticipated at this time.
- Details as to exposure control measures shall be provided. This will psyco initiate, for example exclusion, contamination reduction, and support zones, procedures for site entry and exit, the use of a buddy system, site communication, site specific safe work practice and the identification of the nearest medical facility.
 - Standard drilling procedures similar to gas-station or other potentially hazardous site will be in use.
- A section of the Site-Specific Health and Safety Plan will include site specific equipment and personality contamination procedures.
 - Decontamination of all sample and drill equipment will be in practice for the site.
- Standard Operating Procedures, which are specific to the site and/or tasks, will be covered for review.
- A contingency plan, to be implemented in the event of illness or injury, fires, catastrophic events will be developed for inclusion.
 - An emergency meeting point has been established at the driveway as a meeting point in case of unforeseen development.

Compliance base entry procedures will be described if necessary.

The Health and Safety Manager and/or the Corporate Manager of Health and Safety are responsible for review of all Site Specific Health and Safety Plans. The reviews performed to ensure health and safety hazard potentials have been considered for all anticipated project work. No work associated with hazardous materials will be performed until an acceptable Site Specific Health and Safety Plan has been submitted and approved. This document is accepted upon signature of the Health and Safety Representative or the Corporate Manager of Health and Safety.

12.0 AUDIT AND INSPECTION

12.1 INTRODUCTION

The audit and inspection procedures establishes some guidelines which should be followed in the event of an unexpected Health and Safety Audit and Inspection by client or regulatory agency at a specific project site.

12.2 GUIDELINES

It is extremely important that site personnel be prepared to handle a regulatory inspection. All appropriate documentation should be readily available for the auditor. The Site Health and Safety Representative and Project Manager should be the prime interfaces with the auditing team. All employees should have read and signed the Site Health and Safety Plan.

- As soon as practical, the Corporate Manager of Health and Safety and/or the Office of General Council should be notified with details of the audit.
- As early as possible, establish a reason for the inspection. Employee complaints, specific projects and specific processes are some typical inspection impedes.
- The auditor shall be accompanied at all times during the inspection by the Site Health and Safety Representative and/or the Project Manager.
- Detailed notes should be kept of all questions asked of any personnel and/or any information or process reviewed by the auditor.
- Side-by-side photographs and/or video tapes should be taken whenever the auditor takes such photographs or video tapes. All photos should correspond with the inspector's records.
- Responses to the auditor's questions should be short and direct. It is perfectly acceptable to respond with "I don't know, but can find out". Never speculate, assume, or extrapolate in any response to the director.

13.0 STANDARD OPERATING PROCEDURES

Only relevant SOPs should be included in the HASP. The following is a list of potential SOPs for the worksite:

- EYE AND FACE PROTECTION
- HEAD PROTECTION
- FOOT PROTECTION
- HEARING CONSERVATION AND PROTECTION
- FALL PROTECTION
- SAFETY NETS
- LADDER SAFETY PLAN
- WORK PRACTICES OVER OR NEAR WATER
- BURNING AND WELDING
- RIGGING
- MOTOR VEHICLE OPERATION
- LOCK-OUT/TAG-OUT PROCEDURES
- HOT WORK PERMITTING
- CONTRACTOR SAFETY PLANS
- EXCAVATION SAFETY
- EQUIPMENT DECONTAMINATION
- SAMPLE HANDLING AND DISPOSAL
- CONFINED SPACE ENTRY
- LEAD

Emergency Contact information

Project manager: James Robinson of

Enviro Assessment, PC

Site manager contact: James Robinson

Site Contractor company and non-field

contact: Steve Ashe

Locate Contractor company and non-field

contact:

Local site manager:

Client:

Ben Engelman 11652 Bridge Park Ct., Cupertino, CA 95014 (408) 891-8396

Additional facility contacts:

Emergency contact: 911

Poison control center:

800 222-1222

Local Fire Department location and con-

tact:

Monta Vista Fire Station #7

Address: 22620 Stevens Creek Blvd

TEL: 408-299-3144 911 for emergencies

Closest Hospital location:

Urgent Care Cupertino - El Camino Health 19600 Vallco Pkwy Ste 170, Cupertino, CA

95014

www.elcaminohealth.org

+1(408) 871-5090