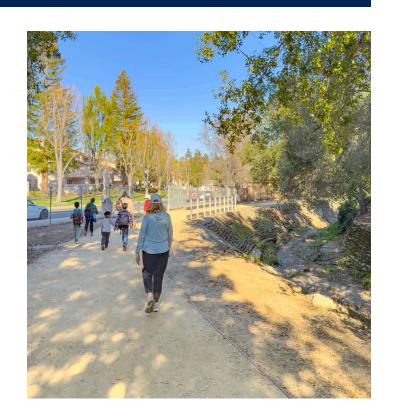
CITY OF CUPERTINO

ACTIVE TRANSPORTATION PLAN

Bicycle Pedestrian Commission August 20, 2025


Agenda

- Project Overview & Schedule
- Plan Goals
- What we Heard from the Public
- Bicycle & Pedestrian Analysis
- Recommendations Process
- Prioritization
- Phase 2 Description
- Next Steps
- Questions/Discussion

Key Information

- Phase 1 Outreach
 - What we heard
- Phase 1 Analysis
 - Methods & results
- Draft Prioritization
 Criteria
 - Provide feedback

Why an Active Transportation Plan?

About **4% of adults** walk or bike to work* but **33% of students** walk or bike to school**

30% of all car trips starting/ending in Cupertino are <5mi, a distance feasible for active modes

There is a high number of recreational walking or biking trips (almost 2,000 a week)***

^{*}Commuter Mode Share (Source: ACS 2021 5-Year estimates)

^{**2024-2025} Safe Routes to School Travel Tally Data

^{***}Strava Metro data from July 7-July 13, 2025

Why an Active Transportation Plan?

60% of all serious or fatal traffic crashes in Cupertino involve people walking or biking

Plan for future **growth** to maintain quality of life for **today's residents**

Create a **project roadmap** for City Staff, providing certainty & stability to all

Project Schedule

Plan Goals

Safety - Focus on the High-Injury Network

Access - Improve access to schools, jobs, parks, and other destinations

Maintenance - Fix & maintain the existing network

Sustainability - Improve air quality, climate, and public health

Multimodal Balance - Minimize impacts on roadway operations

Fairness - Improvements distributed to all neighborhoods

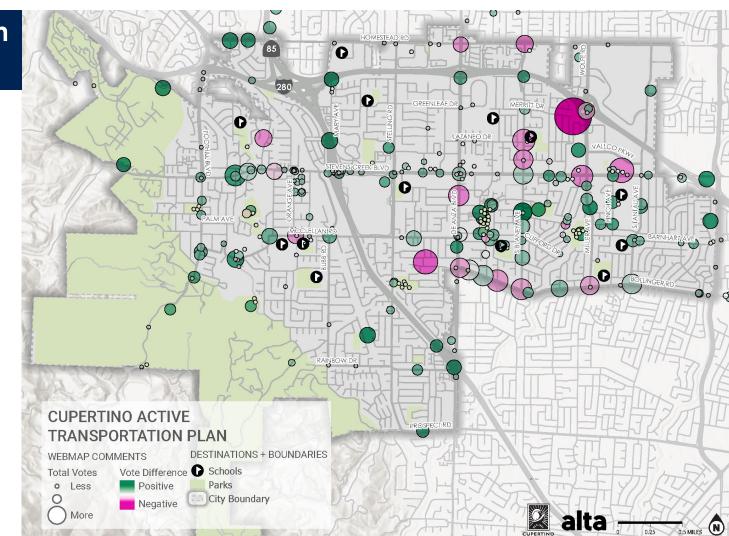
Phase 1 Outreach

- 9 Pop-up Events &2 Community Workshops
- 36 Promotional Signs
 Installed across the City

Phase 1 Outreach

1,361 People Reached & 2,987 Public Comments

Received via outreach boards, an interactive webmap, survey, and emails


Phase 1 Outreach What We Heard

Webmap Comments

Larger dots indicate locations with more comments, "likes", and "dislikes"

Green dots indicate more "like" votes on a comment

Pink dots indicate more "dislike" votes on a comment

Phase 1 Outreach – What We Heard

Desire for Connected Networks

Close gaps & reduce barriers

Focus on Pedestrian Improvements

Ensure pedestrian needs are being met

Lead with Safety and Accessibility

Prioritize the top two ranked plan goals

Focus Improvements near Schools

Focus on school travel

Phase 1 Outreach – What We Heard

Reflect All Voices

Capture all opinions about ATP

Concern About Tradeoffs

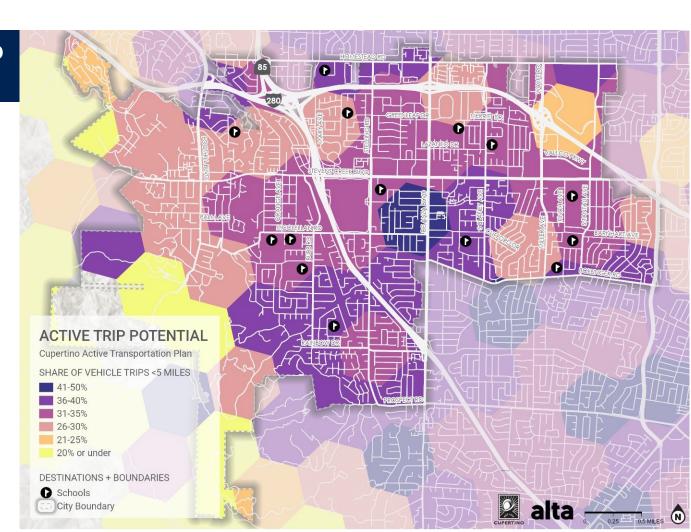
Consider the impact on parking/traffic

Don't Just Build, Maintain

Dedicate resources towards bike facility maintenance

Track Progress

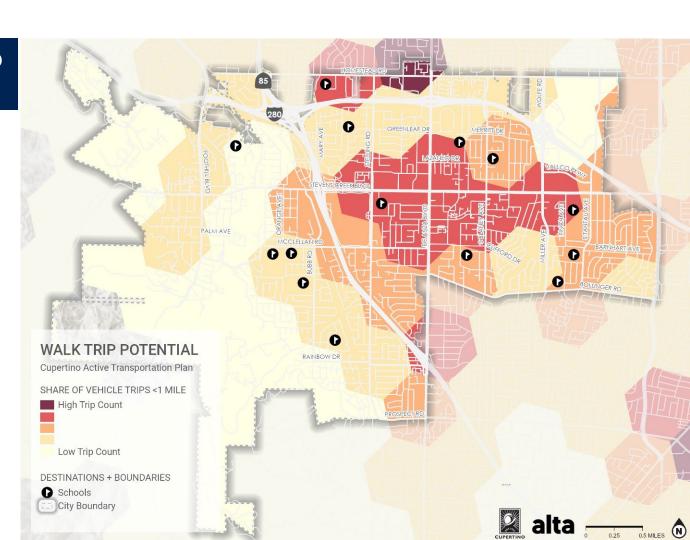
Monitor the utilization of new projects



Analysis - ATP

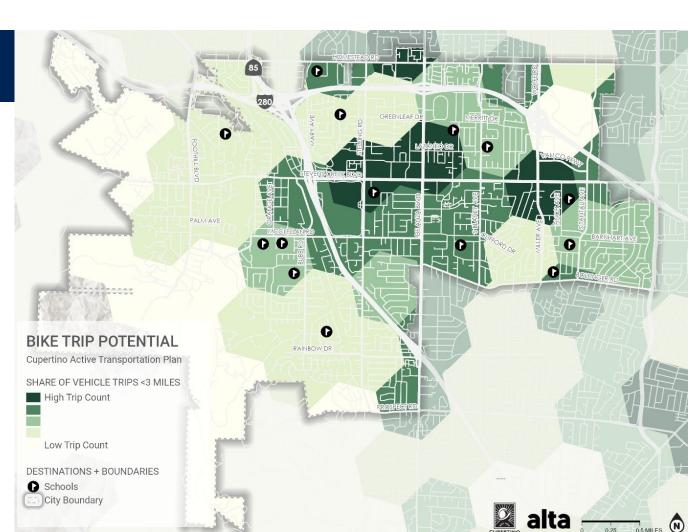
Active Trip Potential (ATP)

Roughly 30% of all car trips starting or ending in Cupertino are 5 miles or less


ATP uses origin/
destination data from cell
phones, randomized for
privacy

Analysis - ATP

Walk Trip Potential


Number of car trips under 1 mile – trips that could be made by walking

Analysis - ATP

Bike Trip Potential

Number of car trips 1-3 miles – trips that could be made by bike

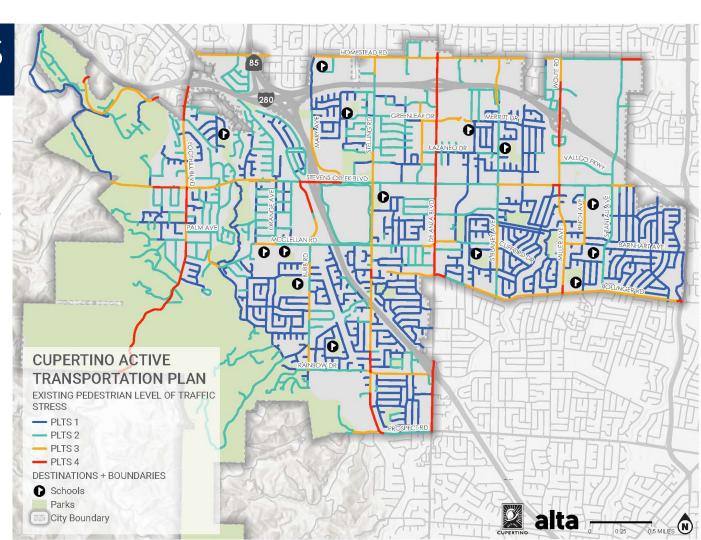
Analysis - Level of Traffic Stress

PEDESTRIAN LEVEL OF TRAFFIC STRESS

INCREASING LEVEL OF COMFORT, SAFETY, AND INTEREST IN WALKING FOR TRANSPORTATION LTS 4 LTS 3 LTS 2 LTS₁ High traffic stress and higher Little to no traffic stress and less Moderate stress and greater Little traffic stress and more attention required: suitable only attention required: most attention required; suitable for attention required; people of all for able-bodied adults with able-bodied adults would feel teens and adults. ages and abilities would feel limited route choices. uncomfortable but safe. comfortable walking and rolling. 0

Source: Oregon DOT Analysis Procedures Manual, Ch 14

Pedestrian Level of Traffic Stress


Measure perception of comfort & safety while walking

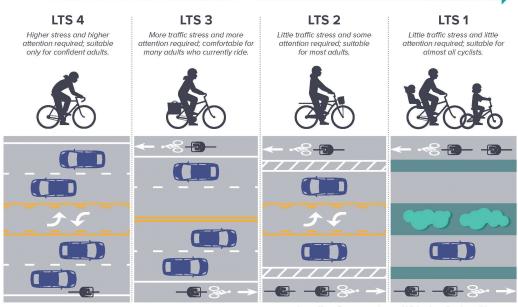
Analysis still inprogress, anticipated late May 2025

Analysis - LTS

Pedestrian LTS Map

Major roadways (De Anza Blvd, Foothill Blvd) and highway overcrossings have a high level of traffic stress for pedestrians

Analysis - LTS

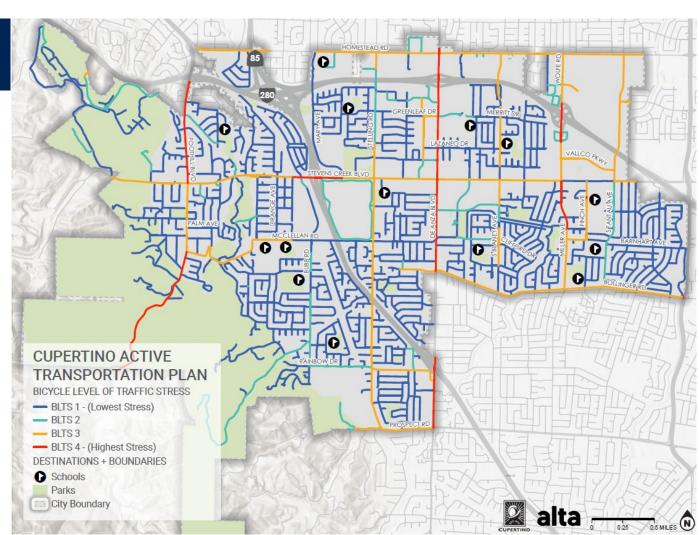

Bicycle Level of Traffic Stress

Measures perception & comfort of people riding bikes

LTS 1 = comfortable for all ages & abilities

BICYCLE LEVEL OF TRAFFIC STRESS

INCREASING LEVEL OF COMFORT, SAFETY, AND INTEREST IN BICYCLING FOR TRANSPORTATION



Source: Mineta Transportation Institute, 2012. Low Stress Bicycling and Connectivity.

Analysis - LTS

Bicycle LTS Map

Most major roadways (Stevens Creek Blvd, Wolfe Rd, Miller Ave, Blaney Ave, De Anza Blvd, Foothill Blvd) have high levels of traffic stress for bicyclists

Analysis – SAST (stress-adjusted short trips)

Walk Gap Score

Gaps in the network and areas with the highest potential to generate new walking trips

Analysis – SAST (stress-adjusted short trips)

Bike Gap Score

Gaps in the network and areas with the highest potential to generate new biking trips

Recommendations Process

Pedestrian Projects Considerations

- Develop and apply pedestrian crossing treatment typologies
- Previous plan recommendations
- Intersections near schools, bus stops, city facilities, and large employers
- Sidewalk network gaps and connectivity

Pedestrian Project Typologies

Group A—Crossing Improvements

- Advanced Stop/Yield Bar

Advanced stop or yield bar markings are placed in advance of a crosswalk to discourage drivers from encroaching on the crosswalk.

In-Street Crossing Sign

In-street crossing signs reinforce the driver requirement to yield the right of way to pedestrians at designated pedestrian crossing locations.

High-Visibility Crosswalk

High-visibility crosswalks are marked with thick bars, drawing additional attention and awareness to the crossing. In school zones, these crossings are yellow instead of the standard white color.

Visibility Improvements

Effective street lighting at pedestrian crossing locations increases vehicle operators' visibility of crosswalk and pedestrian users.

Group B—Geometric Changes

Median Refuge Islands

Median refuge islands help improve access for people walking by increasing visibility and allowing pedestrians to cross one direction of traffic at a time. Improve ease of crossing at mid-block locations.

Curb Extensions

Curb extensions minimize exposure for people crossing the street by shortening crossing distance and giving them a better chance to see and be seen before committing to crossing.

Curb Ramp

Curb ramps provide access between the sidewalk and roadway for people using wheelchairs, strollers, walkers, hand carts, bicycles, and for people who have trouble stepping up and down high curbs.

Group C—Traffic Control Improvements

Leading Pedestrian Interval

Leading Pedestrian Interval (LPI) gives a walk signal to pedestrian before the traffic signal turns green for vehicles. This allows pedestrian to enter the crosswalk before drivers start moving, increasing pedestrian visibility to turning drivers.

Rectangular Rapid Flashing Beacon

Rectangular Rapid Flash Beacons (RRFB) are a type of active warning beacon used at unsignalized crossings. They are designed to increase motor vehicle yielding compliance on multi-lane or high-volume roadways. Activated with a push-button.

Bicycle Projects Considerations

- Previous plan recommendations
- Roadway stress and bike trip demand
- Roadway reconfiguration feasibility
- Roadway context including vehicle speed and traffic volume
- Public input

Bicycle Project Types

Most separation

Least Separation

Shared-Use Path

Paved paths shared by people walking and rolling completely separated from motor vehicle traffic. Comfortable for people of all ages and abilities. Example: Regnart Creek Trail.

Separated Bikeway

An on-street bike lane that is separated from motor vehicle traffic by a vertical barrier such as bollards, raised medians, planters, or parked cars.

Example: Stevens Creek Boulevard.

Buffered Bike Lane

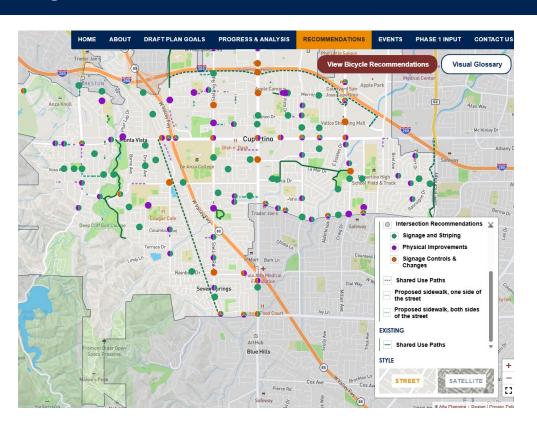
A conventional bike lane paired with a buffer space that separates the bike lane from adjacent motor vehicle travel lane and/ or parking lane.

Example: Rodrigues Avenue.

Bike Lane

Dedicated lane for bicycle travel adjacent to traffic. Separated from motor vehicle traffic or parking by painted line.

Example: Blaney Avenue.



Neighborhood Bike Route

Signed bike route, sharing the roadway with motor vehicles on quiet neighborhood streets. Includes signs, street markings, and substantial traffic calming.

Example: Price Avenue at Portal Avenue.

Webmap Preview

Program & Policy Recommendations

Engineering policies and programs:

Example: Active detection at intersections

Encouragement programs:

Example: Bike rack program

Education programs:

Example: Electric micromobility education

Enforcement programs:

Example: Target enforcement of vehicular violations on the High-Injury Network

Evaluation programs:

Example: Bicycle and pedestrian traffic counts

Draft Bicycle Network Prioritization Criteria

	Goal	Criteria	Metric (Source)	Max Score
	Safety	Collision History	Roadway is on the High Injury Network	20
		Stress Level	Max score from bicycle level of traffic stress analysis	10
	Access	School Proximity	School located nearby	10
		High Frequency Transit Proximity	Presence of transit stops	5
		Parks & Other Destination Proximity	Presence of parks, the library, and shopping centers	10
	Sustainability		Roadway has high bicycle or e-bike trip	5
		Active Trip Potential	potential Fills network facility gap within a segment	5
	Balance	Roadway Impact	Potential need for lane reduction or parking removal	(-10)
	Fairness	Public Input	Roadway was identified during public outreach process	20

Draft Pedestrian Intersection Prioritization Criteria

Goal	Criteria	Metric (Source)	Max Score
	Collision History	Roadway is on the High Injury Network	20
Safety	Stress Level	Max score from pedestrian level of traffic stress analysis	10
	School Proximity	School located nearby	10
Access	High Frequency Transit Proximity	Presence of transit stops	10
Access	Parks & Other Destination Proximity	Presence of parks, the library, and shopping centers	10
		Roadway has high active pedestrian	5
Sustainability	Active Trip Potential	trip potential Fills network facility gap within a segment	5
Fairness	Public Input	Roadway was identified during public outreach process	20

Draft Pedestrian Sidewalk Prioritization Criteria

Goal	Criteria	Metric (Source)	Max Score
	Collision History	Roadway is on the High Injury Network	20
Safety	Stress Level	Max score from pedestrian and bicycle level of traffic stress analysis	10
	School Proximity	School located nearby	10
Access	High Frequency Transit Proximity	Presence of transit stops	10
Access	Parks & Other Destination Proximity	Presence of parks, the library, and shopping centers	10
		Roadway has high trip potential	5
Sustainability	Active Trip Potential	Fills network facility gap within a segment	5
Fairness	Public Input	Roadway was identified during public outreach process	20

Phase 2 Public Input Spaces

1. Online Webmap

Hosted on the project website: www.cupertinoATP.org

- 2. 3 Pop-up Events
- 2 Community Workshops (one in person, one virtual)
- 4. Direct emails to: info@CupertinoATP.org

Input is focused on network recommendations

Phase 2 Outreach (Aug-Oct)

Public Hearings

- August 20 Bicycle Pedestrian Commission
- September 9 Planning Commission
- September 16 Cupertino City Council

Pop-Up Events

- Date TBD Farmer's Market
- September 13 Silicon Valley Fall Fest
- September 28 Bike Fest

Community Workshops

- September 29 Community Hall
- October 6 Virtual Workshop

What Comes Next

- Update recommendations
- Prioritize recommendations for implementation
- "Implementation Packages" for highestpriority projects
- Draft Plan

Next Steps

Phase 2 – August through October

Phase 1 review at City Commissions & Council

Phase 3 – January

Draft Plan

Final Plan at City Council April 2026

How can people get involved?

- Visit CupertinoATP.org
 - Comment on the webmap
 - Attend an event
 - Email our project team

Thank You!

Questions/Discussion

info@CupertinoATP.org

www.cupertinoATP.org

